The concentrations of C _{3} \text { and } iC _{4} are small enough to be neglected. Take the liquid: vapour ratio as 3 : 1.
Estimate the liquid and vapour compositions leaving the reboiler:
Vapour rate, V D 36/3600 D 0.1 kmol/s
L / V=3, so liquid rate, L=3 V =0.3 kmol/s and feed, F=L+V=0.4 kmol/s. The vapour and liquid compositions leaving the reboiler can be estimated using the same procedure as that for a flash calculation; see Section 11.3.3.
|
K_{i} |
A_{i}=K_{i} \times L / V |
V_{i}=z_{i} /\left(1+A_{I}\right) |
y_{i}=V_{i} / V |
x_{i}=\left(F z_{i}-V_{i}\right) / L |
nC _{4} |
2.03 |
6.09 |
0.001 |
0.01 |
0.023 |
iC _{5} |
1.06 |
3.18 |
0.033 |
0.324 |
0.343 |
nC _{5} |
0.92 |
2.76 |
0.068 |
0.667 |
0.627 |
Totals |
|
|
0.102 |
1.001 |
0.993 |
(near enough correct) |
Enthalpies of vaporisation, from Figures (b) and (c) Example 11.9, kJ/mol
|
x_{i} |
H_{i} |
h_{i} |
H_{i}-h_{i} |
x_{i}\left(H_{i}-h_{i}\right) |
nC _{4} |
0.02 |
50 |
34 |
16 |
0.32 |
iC _{5} |
0.35 |
58 |
41 |
17 |
5.95 |
nC _{5} |
0.63 |
61 |
42 |
19 |
11.97 |
Totals |
|
18.24 |
Exchanger duty, feed to reboiler taken as at its boiling point
= vapour flow-rate × heat of vaporisation
=0.1 \times 10^{3} \times 18.24=\underline{\underline{1824}} kW
Take the maximum flux as 37,900 W / m ^{2}; see Section 12.11.5.
Heat transfer area required =1,824,000 / 37,900=48.1 m ^{2}
Use 25 mm i.d., 2.5 m long tubes, a popular size for vertical thermosyphon reboilers.
Area of one tube =25 \times 10^{-3} \pi \times 2.5=0.196 m ^{2}
Number of tubes required =48.1 / 0.196=246
Liquid density at base of exchanger =520 kg / m ^{3}
Relative molecular mass at tube entry =58 \times 0.02+72(0.34+0.64)=71.7
vapour at exit =58 \times 0.02+72(0.35+0.63)=71.7
Two-phase fluid density at tube exit:
volume of vapour =0.1 \times(22.4 . / 8.3) \times(393 / 273)=0.389 m ^{3}
volume of liquid =(0.3 \times 71.7) / 520=0.0413 m ^{3}
total volume =0.389+0.0413=0.430 m ^{3}
exit density =\frac{(0.4 \times 71.7)}{0.430} \times 71.7=66.7 kg / m ^{3}