Question 12.7: Design a condenser for the following duty: 45,000 kg/h of mi...

Design a condenser for the following duty: 45,000 kg/h of mixed light hydrocarbon vapours to be condensed. The condenser to operate at 10 bar. The vapour will enter the condenser saturated at 60^{\circ} C and the condensation will be complete at 45^{\circ} C. The average molecular weight of the vapours is 52. The enthalpy of the vapour is 596.5 kJ/kg and the condensate 247.0 kJ/kg. Cooling water is available at 30^{\circ} C and the temperature rise is to be limited to 10^{\circ} C. Plant standards require tubes of 20 mm o.d., 16.8 mm i.d., 4.88 m (16 ft) long, of admiralty brass. The vapours are to be totally condensed and no sub-cooling is required.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Only the thermal design will be done. The physical properties of the mixture will be taken as the mean of those for n-propane (MW = 44) and n-butane (MW = 58), at the average temperature.

 

\text { Heat transferred from vapour }=\frac{45,000}{3600}(596.5-247.0)=4368.8 kW

 

\text { Cooling water flow }=\frac{4368.8}{(40-30) 4.18}=104.5 kg / s

 

\text { Assumed overall coefficient (Table 12.1) }=900 W / m ^{2}{ }^{\circ} C

 

Table 12.1. Typical overall coefficients
Shell and tube exchangers
Hot fluid Cold fluid U\left( W / m ^{2 \circ} C \right)
Heat exchangers
Water Water 800-1500
Organic solvents Organic solvents 100-300
Light oils Light oils 100-400
Heavy oils Heavy oils 50-300
Gases Gases 10-50
Coolers
Organic solvents Water 250-750
Light oils Water 350-900
Heavy oils Water 60-300
Gases Water 20-300
Organic solvents Brine 150-500
Water Brine 600-1200
Gases Brine 15-250
Heaters
Steam Water 1500-4000
Steam Organic solvents 500-1000
Steam Light oils 300-900
Steam Heavy oils 60-450
Steam Gases 30-300
Dowtherm Heavy oils 30-300
Dowtherm Gases 50-300
Flue gases Steam 20-200
Flue Hydrocarbon vapours 30-100
Condensers
Aqueous vapours Water 1000-1500
Organic vapours Water 700-1000
Organics (some non-condensables) Water 500-700
Vacuum condensers Water 200-500
Vaporisers
Steam Aqueous solutions 1000-1500
Steam Light organics 900-1200
Steam Heavy organics 600-900
Air-cooled exchangers
Process fluid
Water 300-450
Light organics 300-700
Heavy organics 50-150
\text { Gases, } 5-10 \text { bar } 50-100
10-30 \text { bar } 100-300
Condensing hydrocarbons 300-600
Immersed coils
Coil Pool
Natural circulation
Steam Dilute aqueous solutions 500-1000
Steam Light oils 200-300
Steam Heavy oils 70-150
Water Aqueous solutions 200-500
Water Light oils 100-150

 

Table 12.1. (continued)
Immersed coils
Coil Pool U\left( W / m ^{2}{ }^{\circ} C \right)
Agitated
Steam Dilute aqueous solutions 800-1500
Steam Light oils 300-500
Steam Heavy oils 200 400 200-400
Water Aqueous solutions 400-700
Water Light oils 200-300
Jacketed vessels
Jacket Vessel
Steam Dilute aqueous solutions 500-700
Steam Light organics 250-500
Water Dilute aqueous solutions 200-500
Water Light organics 200-300
Gasketed-plate exchangers
Hot fluid Cold fluid
Light organic Light organic 2500-5000
Light organic Viscous organic 250-500
Viscous organic Viscous organic 100-200
Light organic Process water 2500-3500
Viscous organic Process water 250-500
Light organic Cooling water 2000-4500
Viscous organic Cooling water 250-450
Condensing steam Light organic 2500-3500
Condensing steam Viscous organic 250-500
Process water Process water 5000-7500
Process water Cooling water 5000-7000
Dilute aqueous solutions Cooling water 5000-7000
Condensing steam Process water 3500-4500

 

Mean temperature difference: the condensation range is small and the change in saturation temperature will be linear, so the corrected logarithmic mean temperature difference can be used.

 

R=\frac{(60-45)}{(40-30)}=1.5 (12.6)

 

S=\frac{(40-30)}{(60-30)}=0.33 (12.7)

 

Try a horizontal exchanger, condensation in the shell, four tube passes. For one shell pass, four tube passes, from Figure 12.19, F_{t} = 0.92

 

\Delta T_{\operatorname{lm}}=\frac{(60-40)-(45-30)}{\ln \frac{(60-40)}{(45-30)}}=17.4^{\circ} C

 

\Delta T_{m}=0.92 \times 17.4=16^{\circ} C

 

\text { Trial area }=\frac{4368.8 \times 10^{3}}{900 \times 16}=303 m ^{2}

 

\text { Surface area of one tube }=20 \times 10^{-3} \pi \times 4.88=0.305 m ^{2} (ignore tube sheet thickness)

 

\text { Number of tubes }=\frac{303}{0.305}=992

 

\text { Use square pitch, } P_{t}=1.25 \times 20 mm =25 mm \text {. }

 

Tube bundle diameter

 

D_{b}=20\left(\frac{992}{0.158}\right)^{1 / 2.263}=954 mm (12.3b)

 

\text { Number of tubes in centre row } N_{r}=D_{b} / P_{t}=954 / 25=38

 

Shell-side coefficient

Estimate tube wall temperature, T_{w}; assume condensing coefficient of 1500 W / m ^{2}{ }^{\circ} C,

Mean temperature

 

\text { Shell-side }=\frac{60+45}{2}=52.5^{\circ} C

 

\text { Tube-side }=\frac{40+30}{2}=35^{\circ} C

 

\begin{aligned}\left(52.5-T_{w}\right) 1500 &=(52.5-35) 900 \\T_{w} &=42.0{ }^{\circ} C\end{aligned}

 

\text { Mean temperature condensate }=\frac{52.5+42.0}{2}=47^{\circ} C

 

\text { Physical properties at } 47^{\circ} C

 

\mu_{L}=0.16 mNs / m ^{2}

 

\rho_{L}=551 kg / m ^{3}

 

k_{L}=0.13 W / m ^{\circ} C

 

vapour density at mean vapour temperature

 

\rho_{v}=\frac{52}{22.4} \times \frac{273}{(273+52.5)} \times \frac{10}{1}=19.5 kg / m ^{3}

 

\Gamma_{h}=\frac{W_{c}}{L N_{t}}=\frac{45,000}{3600} \times \frac{1}{4.88 \times 992}=2.6 \times 10^{-3} kg / s m

 

N_{r}=\frac{2}{3} \times 38=25

 

\begin{aligned}h_{c} &=0.95 \times 0.13\left[\frac{551(551-19.5) 9.81}{0.16 \times 10^{-3} \times 2.6 \times 10^{-3}}\right]^{1 / 3} \times 25^{-1 / 6} \\&=1375 W / m ^{2{ }^{\circ} C }\end{aligned} (12.50)

 

\text { Close enough to assumed value of } 1500 W / m ^{2}{ }^{\circ} C \text {, so no correction to } T_{w} \text { needed. }

 

Tube-side coefficient

 

\text { Tube cross-sectional area }=\frac{\pi}{4}\left(16.8 \times 10^{-3}\right)^{2} \times \frac{992}{4}=0.055 m ^{2}

 

\text { Density of water, at } 35^{\circ} C =993 kg / m ^{3}

 

\text { Tube velocity }=\frac{104.5}{993} \times \frac{1}{0.055}=1.91 m / s

 

\begin{aligned}h_{i} &=\frac{4200(1.35+0.02 \times 35) 1.91^{0.8}}{16.8^{0.2}} \\&=8218 W / m ^{2 \circ} C\end{aligned} (12.17)

 

Fouling factors: as neither fluid is heavily fouling, use 6000 W / m ^{2}{ }^{\circ} C for each side.

 

k_{w}=50 W / m ^{\circ} C

 

Overall coefficient

 

\begin{aligned}\frac{1}{U} &=\frac{1}{1375}+\frac{1}{6000}+\frac{20 \times 10^{-3} \ln \left(\frac{20}{16.8}\right)}{2 \times 50}+\frac{20}{16.8} \times \frac{1}{6000}+\frac{20}{16.8} \times \frac{1}{8218} \\U &=786 W / m ^{2}{ }^{\circ} C\end{aligned} (12.2)

 

\text { Significantly lower than the assumed value of } 900 W / m ^{2}{ }^{\circ} C \text {. }

 

\text { Repeat calculation using new trial value of } 750 W / m ^{2}{ }^{\circ} C \text {. }

 

\text { Area }=\frac{4368 \times 10^{3}}{750 \times 16}=364 m ^{2}

 

\text { Number of tubes }=\frac{364}{0305}=1194

 

D_{b}=20\left(\frac{1194}{0.158}\right)^{1 / 2.263}=1035 mm (12.36)

 

\text { Number of tubes in centre row }=\frac{1035}{25}=41

 

\Gamma_{h}=\frac{45,000}{3600} \times \frac{1}{4.88 \times 1194}=2.15 \times 10^{-3} kg / m s

 

N_{r}=\frac{2}{3} \times 41=27

 

\begin{aligned}h_{c} &=0.95 \times 0.13\left[\frac{551(551-19.5) 9.81}{0.16 \times 10^{-3} \times 2.15 \times 10^{-3}}\right]^{1 / 3} \times 27^{-1 / 6} \\&=1447 W / m ^{2}{ }^{\circ} C\end{aligned} (12.50)

 

\text { New tube velocity }=1.91 \times \frac{992}{1194}=1.59 m / s

 

h_{i}=4200(1.35+0.02 \times 35) \frac{1.59^{0.8}}{16.8^{0.2}}=7097 W / m ^{2 \circ} C (12.17)

 

\begin{aligned}\frac{1}{U}=& \frac{1}{1447}+\frac{1}{6000}+\frac{20 \times 10^{-3} \ln \left(\frac{20}{16.8}\right)}{2 \times 50} \\&+\frac{20}{16.8} \times \frac{1}{6000}+\frac{20}{16.8} \times \frac{1}{7097} \\U=& 773 W / m ^{2{ }^{\circ} C }\end{aligned} (12.2)

 

Close enough to estimate, firm up design.

Shell-side pressure drop

Use pull-through floating head, no need for close clearance.

Select baffle spacing = shell diameter, 45 per cent cut.

From Figure 12.10, clearance = 95 mm.

Shell i.d. = 1035 + 95 = 1130 mm

Use Kern’s method to make an approximate estimate.

 

\begin{aligned}\text { Cross-flow area } A_{s} &=\frac{(25-20)}{25} 1130 \times 1130 \times 10^{-6} \\&=0.255 m ^{2}\end{aligned} (12.21)

 

Mass flow-rate, based on inlet conditions

 

G_{s}=\frac{45,000}{3600} \times \frac{1}{0.255}=49.02 kg / s m ^{2}

 

\text { Equivalent diameter, } \begin{aligned}d_{e} &=\frac{1.27}{20}\left(25^{2}-0.785 \times 20^{2}\right) \\&=19.8 mm\end{aligned} (12.22)

 

\text { Vapour viscosity }=0.008 mNs / m ^{2}

 

R e=\frac{49.02 \times 19.8 \times 10^{-3}}{0.008 \times 10^{-3}}=121,325

 

\text { From Figure } 12.30, j_{f}=2.2 \times 10^{-2}

 

u_{s}=\frac{G_{s}}{\rho_{v}}=\frac{49.02}{19.5}=2.51 m / s

 

Take pressure drop as 50 per cent of that calculated using the inlet flow; neglect viscosity correction.

 

\begin{aligned}\Delta P_{s} &=\frac{1}{2}\left[8 \times 2.2 \times 10^{-2}\left(\frac{1130}{19.8}\right)\left(\frac{4.88}{1.130}\right) \frac{19.5(2.51)^{2}}{2}\right] \\&=1322 N / m ^{2} \\&=1.3 kPa\end{aligned} (12.26)

 

Negligible; more sophisticated method of calculation not justified.

Tube-side pressure drop

 

\text { Viscosity of water }=0.6 mN s / m ^{2}

 

R e=\frac{u_{t} \rho d_{i}}{\mu}=\frac{1.59 \times 993 \times 16.8 \times 10^{-3}}{0.6 \times 10^{-3}}=\underline{\underline{44,208}}

 

\text { From Figure } 12.24, i_{f}=3.5 \times 10^{-3} \text {. }

 

Neglect viscosity correction.

 

\begin{aligned}\Delta P_{t} &=4\left[8 \times 3.5 \times 10^{-3}\left(\frac{4.88}{16.8 \times 10^{-3}}\right)+2.5\right] \frac{993 \times 1.59^{2}}{2} \\&=53,388 N / m ^{2} \\&=53 kPa (7.7 psi ),\end{aligned} (12.20)

 

acceptable.

12.7
12.7.
12.7..
12.7...
12.7....

Related Answered Questions