Question 12.13: Investigate the use of a gasketed plate heat exchanger for t...

Investigate the use of a gasketed plate heat exchanger for the duty set out in Example 12.1: cooling methanol using brackish water as the coolant. Titanium plates are to be specified, to resist corrosion by the saline water.

Summary of Example 12.1

Cool 100,000 kg/h of methanol from 95^{\circ} C to 95^{\circ} C, duty 4340 kW. Cooling water inlet temperature 25^oC and outlet temperature 95^{\circ} C. Flow-rates: methanol 27.8 kg/s, water 68.9 kg/s.

Physical properties: Methanol Water
\text { Density, } kg / m ^{3} 750 995
\text { Viscosity, } mN m ^{-2} s 3.4 0.8
Prandtl number 5.1 5.7

Logarithmic mean temperature difference 31^{\circ} C.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

NTU, based on the maximum temperature difference

 

=\frac{95-40}{31}=1.8

 

Try a 1 : 1 pass arrangement.

 

\text { From Figure } 12.62, F_{t}=0.96

 

From Table 12.2 take the overall coefficient, light organic – water, to be 2000 m ^{-20} C ^{-1}.

 

Table 12.2. Fouling factors (coefficients), typical values
Fluid \text { Coefficient }\left( W / m ^{2}{ }^{\circ} C \right) \text { Factor (resistance) }\left( m ^{2 \circ} C / W \right)
River water 3000-12,000 0.0003-0.0001
Sea water 1000-3000 0.001-0.0003
Cooling water (towers) 3000-6000 0.0003-0.00017
Towns water (soft) 3000-5000 0.0003-0.0002
Towns water (hard) 1000-2000 0.001-0.0005
Steam condensate 1500-5000 0.00067-0.0002
Steam (oil free) 4000-10,000 0.0025-0.0001
Steam (oil traces) 2000-5000 0.0005-0.0002
Refrigerated brine 3000-5000 0.0003-0.0002
Air and industrial gases 5000-10,000 0.0002-0.0001
Flue gases 2000-5000 0.0005-0.0002
Organic vapours 5000 0.0002
Organic liquids 5000 0.0002
Light hydrocarbons 5000 0.0002
Heavy hydrocarbons 2000 0.0005
Boiling organics 2500 0.0004
Condensing organics 5000 0.0002
Heat transfer fluids 5000 0.0002
Aqueous salt solutions 3000-5000 0.0003-0.0002

 

\text { Then, area required }=\frac{4340 \times 10^{3}}{2000 \times 0.96 \times 31}=72.92 m ^{2}

 

Select an effective plate area of 0.75 m ^{2}, effective length 1.5 m and width 0.5 m; these are typical plate dimensions. The actual plate size will be larger to accommodate the gasket area and ports.

Number of plates = total heat transfer area / effective area of one plate

= 72.92/0.75 = 97

No need to adjust this, 97 will give an even number of channels per pass, allowing for an end plate.

 

Number of channels per pass = (97 – 1)/2 = 48

Take plate spacing as 3 mm, a typical value, then:

 

\text { channel cross-sectional area }=3 \times 10^{-3} \times 0.5=0.0015 m ^{2}

 

\text { and hydraulic mean diameter }=2 \times 3 \times 10^{-3}=6 \times 10^{-3} m

 

Methanol

 

\text { Channel velocity }=\frac{27.8}{750} \times \frac{1}{0.0015} \times \frac{1}{48}=0.51 m / s

 

R e=\frac{\rho u_{p} d_{e}}{\mu}=\frac{750 \times 0.51 \times 6 \times 10^{-3}}{0.34 \times 10^{-3}}=6750

 

N u=0.26(6750)^{0.65} \times 5.1^{0.4}=153.8 (12.77)

 

h_{p}=153.8\left(0.19 / 6 \times 10^{-3}\right)=4870 Wm ^{-2{ }^{\circ} C ^{-1}}

 

Brackish water

 

\text { Channel velocity }=\frac{68.9}{995} \times \frac{1}{0.0015} \times \frac{1}{48}=0.96 m / s

 

R e=\frac{955 \times 0.96 \times 6 \times 10^{-3}}{0.8 \times 10^{-3}}=6876

 

N u=0.26(6876)^{0.65} \times 5.7^{0.4}=162.8 (12.77)

 

h_{p}=162.8\left(0.59 / 6 \times 10^{-3}\right)=16,009 Wm ^{-2} C ^{-1}

 

Overall coefficient

From Table 12.9, take the fouling factors (coefficients) as: brackish water (seawater) 6000 Wm ^{-20} C ^{-1} and methanol (light organic) 10,000 Wm ^{-20} C ^{-1}.

 

Table 12.9. Fouling factors (coefficients), typical values for plate heat exchangers
Fluid \text { Coefficient }\left( W / m ^{2}{ }^{\circ} C \right) \text { Factor }\left( m ^{2} C / W \right)
Process water 30,000 0.00003
Towns water (soft) 15,000 0.00007
Towns water (hard) 6000 0.00017
Cooling water (treated) 8000 0.00012
Sea water 6000 0.00017
Lubricating oil 6000 0.00017
Light organics 10,000 0.0001
Process fluids 5000-20,000 0.0002-0.00005

 

Take the plate thickness as 0.75 mm. Thermal conductivity of titanium 21 Wm ^{-20} C ^{-1}.

 

\begin{array}{c}\frac{1}{U}=\frac{1}{4870}+\frac{1}{10,000}+\frac{0.75 \times 10^{-3}}{21}+\frac{1}{16,009}+\frac{1}{6000} \\U=1754 Wm ^{-2 \circ} C ^{-1}, \text { too low }\end{array}

 

Increase the number of channels per pass to 60; giving (2 ð 60) + 1 = 121 plates.

 

\text { Then, methanol channel velocity }=0.51 \times(48 / 60)=0.41 m / s \text {, and } \operatorname{Re}=5400 \text {. }

 

\text { Cooling water channel velocity }=0.96 \times(48 / 60)=0.77 m / s \text {, and } R e=5501

 

\text { Giving, } h_{p}=4215 Wm ^{-2 \circ} C ^{-1} \text { for methanol, and } 13,846 Wm ^{-2 \circ} C ^{-1} \text { for water. }

 

\text { Which gives an overall coefficient of } \underline{1634} Wm ^{-2 \circ} C ^{-1} \text {. }

 

\text { Overall coefficient required } 2000 \times 48 / 60=\underline{\underline{1600}} Wm ^{-2{ }^{\circ} C ^{-1}} \text {, so } 60 \text { plates per pass }

 

should be satisfactory.

Pressure drops

Methanol

 

J_{f}=0.60(5400)^{-0.3}=0.046

 

Path length = plate length x number of passes = 1.5 x 1 = 1.5 m.

 

\Delta P_{p}=8 \times 0.046\left(\frac{1.5}{6 \times 10^{-3}}\right) \times 750 \times \frac{0.41^{2}}{2}=5799 N / m ^{2} (12.78)

 

Port pressure loss, take port diameter as 100 mm, area = 0.00785 m ^{2}.

Velocity through port = (27.8/750)/0.00785 = 4.72 m/s.

 

\Delta P_{p t}=1.3 \times \frac{750 \times 4.72^{2}}{2}=10,860 N / m ^{2} (12.79)

 

\text { Total pressure drop }=5799+10,860=16,659 N / m ^{2}, 0.16 \text { bar. }

 

Water

 

J_{f}=0.6(5501)^{-0.3}=0.045

 

Path length = plate length x number of passes = 1.5 x 1 = 1.5 m.

 

\Delta P_{p}=8 \times 0.045 \times\left(\frac{1.5}{6 \times 10^{-3}}\right) \times 995 \times \frac{0.77^{2}}{2}=26,547 N / m ^{2} (12.78)

 

Velocity through port = (68.9/995)/0.0078 = 8.88 m/s (rather high)

 

\Delta P_{p t}=1.3 \times \frac{995 \times 8.88}{2}=50,999 N / m ^{2}

 

\text { Total pressure drop }=26,547+50,999=77,546 N / m ^{2}, 0.78 bar

 

Could increase the port diameter to reduce the pressure drop.

The trial design should be satisfactory, so a plate heat exchanger could be considered for this duty.

12.13

Related Answered Questions