Question 9.3: Find the transverse displacement of a vibrating string of le...

Find the transverse displacement of a vibrating string of length l with fixed endpoints if the string is initially in its rest position and has a velocity distribution g(x).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We look for the solution of the boundary value problem

\frac{∂^{2}y}{∂t^{2}}= c^{2} \frac{∂^{2}y}{∂x^{2}} ,                                  (9.5)

where y = y(x, t), with

y(0, t) = 0,                                   y  (l, t) = 0,

 

y(x, 0) = 0,                              \frac{∂}{∂t}y(x, t)|_{t=0}= g(x).

We use the separation ansatz  y = X(x) · T (t). By inserting it into (9.5), one obtains

X · \ddot{T} = c^{2}X^{″}T                   or            \frac{X^{″}}{X}(x) =\frac{\ddot{T}}{c^{2}T}(t ).                               (9.7)

Since the left-hand side of (9.7) depends only on x, the right side only on t , and x and t are independent of each other, the equation is satisfied only then if both sides are constant. The constant is denoted by −λ^{2}.

\frac{X^{″}}{X} =−λ^{2}              and                \frac{\ddot{T}}{c^{2}T} =−λ^{2},

or, transformed,

X^{″} +λ^{2}X = 0             and                 \ddot{T} + λ^{2}c^{2}T = 0.                             (9.8)

The two equations have the solutions

X = A_{1}   cos  λx +B_{1}   sin  λx,                 T = A_{2}  cos   λct +B_{2}  sin  λct .

Since y = X · T , we have

y(x, t) = (A_{1}  cos  λx + B_{1}  sin  λx)(A_{2}  cos  λct +B_{2}  sin  λct).                            (9.9)

From the condition y(0, t) = 0, it follows that A_{1}(A_{2}  cos  λct + B_{2}  sin  λct) = 0. This condition is satisfied by A_{1} = 0. Then

y(x, t) = B_{1}  sin  λx(A_{2}  cos  λct + B_{2}  sin  λct).

We now set

B_{1}A_{2} = a,                    B_{1}B_{2} = b,

and it follows that

y(x, t) = sin  λx(a  cos  λct +b  sin  λct).                        (9.10)

From the condition y(l, t) = 0, it follows that sin λl = 0. This happens if

λ l = nπ      or          λ = \frac{nπ}{l}.                         (9.11)

Here, n = 1, 2, 3, . . .. The value n = 0 which seems possible at first sight leads to y(x, t) ≡ 0 and must be excluded. The relation (9.11) is inserted into (9.10). The normal vibration will be labeled by the index n:

y_{n}(x, t) = sin  \frac{nπx}{l} \left(a_{n}  cos \frac{nπct}{l} +b_{n}  sin \frac{nπct}{l}\right).                               (9.12)

Because y(x, 0) = 0, all a_{n} = 0, we have

y_{n}(x, t) = b_{n}  sin \frac{nπx}{l} sin \frac{nπct}{l}.                                   (9.13)

By differentiation of (9.13), we get

\frac{∂y_{n}}{∂t} = b_{n} \frac{nπc}{l}  sin \frac{nπx}{l} cos \frac{nπct}{l}.                                    (9.14)

For linear differential equations, the superposition principle holds, so that the entire solution looks as follows:

\frac{∂y}{∂t}=\sum\limits_{n=1}^{∞}{\frac{nπcb_{n}}{l} sin \frac{nπx}{l}  cos \frac{nπct}{l}}.                                        (9.15)

Because

\frac{∂}{∂t}y(x, t) |_{t=0}= g(x),

it follows that

g(x) =\sum\limits_{n=1}^{∞}{\frac{nπcb_{n}}{l} sin \frac{nπx}{l}}.                                     (9.16)

The Fourier coefficients then follow by

\frac{nπcb_{n}}{l}= \frac{2}{l} \int\limits_{0}^{l}{g(x)  sin \frac{nπx}{l}dx}

or

b_{n} = \frac{2}{nπc} \int\limits_{0}^{l}{g(x)  sin \frac{nπx}{l}dx}

By inserting (9.18) into (9.13), we obtain the final solution for y(x, t):

y(x, t) = \sum\limits_{n=1}^{∞}{\left(\frac{2}{nπc} \int\limits_{0}^{l}{g(x^{′})  sin \frac{nπx^{′}}{l} dx^{′}}\right) sin \frac{nπx}{l} sin \frac{nπct}{l}}.                           (9.19)

Related Answered Questions

Question: 9.5

Verified Answer:

We consider Fig. 9.4. From energy conservation, we...
Question: 9.4

Verified Answer:

(a) f(x)=\begin{cases} 0, &  for       ...
Question: 9.2

Verified Answer:

The Fourier coefficients are a_{0} = \frac{...