Question 9.7: A cantilever beam AB with a uniform load of intensity q acti...

A cantilever beam AB with a uniform load of intensity q acting on the right-hand half of the beam is shown in Fig. 9-19a.

Obtain formulas for the deflection δ_{B} and angle of rotation θ_{B} at the free end (Fig. 9-19c). Note: The beam has length L and constant flexural rigidity EI.

9-19
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach.
1. Conceptualize: In this example, determine the deflection and angle of rotation by treating an element of the uniform load as a concentrated load and then integrating (see Fig. 9-19b).
2. Categorize: The element of the load has a magnitude qdx and is located at distance x from the support. The resulting differential deflection d\delta_{B} and differential angle of rotation d\theta_{B} at the free end are found from the corresponding formulas in Case 5 of Table H-1, Appendix H, by replacing P with qdx and a with x; thus,

d \delta_{B}=\frac{(q d x)\left(x^{2}\right)(3 L-x)}{6 E I} \quad d \theta_{B}=\frac{(q d x)\left(x^{2}\right)}{2 E I}

3. Analyze: Integrate over the loaded region to get

\delta_{B}=\int d \delta_{B}=\frac{q}{6 E I} \int_{L / 2}^{L} x^{2}(3 L-x) d x=\frac{41 q L^{4}}{384 E I}               (9-63)

\theta_{B}=\int d \theta_{B}=\frac{q}{2 E I} \int_{L / 2}^{L} x^{2} d x=\frac{7 q L^{3}}{48 E I}              (9-64)

4. Finalize: These same results can be obtained by using the formulas in Case 3 of Table H-1 and substituting a = b = L / 2. Also, note that subtraction of Case 2 from Case 1 in Table H-1 (with a = b = L / 2) leads to the same results.

Table H-1
Deflections and Slopes of Cantilever Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
\delta_{B}=-v(L)= deflection at end B of the beam (positive downward)
\theta_{B}=-v^{\prime}(L)= angle of rotation at end B of the beam (positive clockwise)
EI = constant

 

v=-\frac{q x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right)   \quad v^{\prime}=\frac{q x}{6 E I}\left(3 L^{2}-3 L x+x^{2}\right)
\delta_{B}=\frac{q L^{4}}{8 E I}   \quad \theta_{B}=\frac{q L^{3}}{6 E I}
v=-\frac{q x^{2}}{24 E I}\left(6 a^{2}-4 a x+x^{2}\right)   \quad(0 \leq x \leq a)
v^{\prime}=-\frac{q x}{6 E I}\left(3 a^{2}-3 a x+x^{2}\right)   \quad(0 \leq x \leq a)
v=-\frac{q a^{3}}{24 E I}(4 x-a) \quad v^{\prime}=-\frac{q a^{3}}{6 E I}   \quad(a \leq x \leq L)
At  x=a: v=-\frac{q a^{4}}{8 E I}   \quad v^{\prime}=-\frac{q a^{3}}{6 E I}
\delta_{B}=\frac{q a^{3}}{24 E I}(4 L-a)   \quad \theta_{B}=\frac{q a^{3}}{6 E I}
v=-\frac{q b x^{2}}{12 E I}(3 L+3 a-2 x)          (0 \leq x \leq a)
v^{\prime}=-\frac{q b x}{2 E I}(L+a-x)            (0 \leq x \leq a)
v=-\frac{q}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}-4 a^{3} x+a^{4}\right)   \quad(a \leq x \leq L)
v^{\prime}=-\frac{q}{6 E I}\left(x^{3}-3 L x^{2}+3 L^{2} x-a^{3}\right)  \quad(a \leq x \leq L)
At x=a:   v=-\frac{q a^{2} b}{12 E I}(3 L+a)  \quad v^{\prime}=-\frac{q a b L}{2 E I}
\delta_{B}=\frac{q}{24 E I}\left(3 L^{4}-4 a^{3} L+a^{4}\right)  \quad \theta_{B}=\frac{q}{6 E I}\left(L^{3}-a^{3}\right)
v=-\frac{P x^{2}}{6 E I}(3 L-x)  \quad v^{\prime}=-\frac{P x}{2 E I}(2 L-x)
\delta_{B}=\frac{P L^{3}}{3 E I}  \quad \theta_{B}=\frac{P L^{2}}{2 E I}
v=-\frac{P x^{2}}{6 E I}(3 a-x) \quad v^{\prime}=-\frac{P x}{2 E I}(2 a-x)  \quad(0 \leq x \leq a)
v=-\frac{P a^{2}}{6 E I}(3 x-a)  \quad v^{\prime}=-\frac{P a^{2}}{2 E I}  \quad(a \leq x \leq L)
At x=a:  \quad v=-\frac{P a^{3}}{3 E I}  \quad v^{\prime}=-\frac{P a^{2}}{2 E I}
\delta_{B}=\frac{P a^{2}}{6 E I}(3 L-a)  \quad \theta_{B}=\frac{P a^{2}}{2 E I}
v=-\frac{M_{0} x^{2}}{2 E I} \quad v^{\prime}=-\frac{M_{0} x}{E I}
\delta_{B}=\frac{M_{0} L^{2}}{2 E I}  \quad \theta_{B}=\frac{M_{0} L}{E I}
v=-\frac{M_{0} x^{2}}{2 E I}  \quad v^{\prime}=-\frac{M_{0} x}{E I} \quad(0 \leq x \leq a)
v=-\frac{M_{0} a}{2 E I}(2 x-a)  \quad v^{\prime}=-\frac{M_{0} a}{E I} \quad(a \leq x \leq L)
At x=a:  \quad v=-\frac{M_{0} a^{2}}{2 E I}  \quad v^{\prime}=-\frac{M_{0} a}{E I}
\delta_{B}=\frac{M_{0} a}{2 E I}(2 L-a)  \quad \theta_{B}=\frac{M_{0} a}{E I}
v=-\frac{q_{0} x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)
v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(4 L^{3}-6 L^{2} x+4 L x^{2}-x^{3}\right)
\delta_{B}=\frac{q_{0} L^{4}}{30 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{24 E I}
v=-\frac{q_{0} x^{2}}{120 L E I}\left(20 L^{3}-10 L^{2} x+x^{3}\right)
v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(8 L^{3}-6 L^{2} x+x^{3}\right)
\delta_{B}=\frac{11 q_{0} L^{4}}{120 E I}  \quad \theta_{B}=\frac{q_{0} L^{3}}{8 E I}
v=-\frac{q_{0} L}{3 \pi^{4} E I}\left(48 L^{3} \cos \frac{\pi x}{2 L}-48 L^{3}+3 \pi^{3} L x^{2}-\pi^{3} x^{3}\right)
v^{\prime}=-\frac{q_{0} L}{\pi^{3} E I}\left(2 \pi^{2} L x-\pi^{2} x^{2}-8L^{2} \sin \frac{\pi x}{2 L}\right)
\delta_{B}=\frac{2 q_{0} L^{4}}{3 \pi^{4} E I}\left(\pi^{3}-24\right)   \quad\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}\left(\pi^{2}-8\right)

 

Related Answered Questions