Question 9.8: A compound beam ABC has a roller support at A, an internal h...

A compound beam ABC has a roller support at A, an internal hinge (that is, moment release) at B, and a fixed support at C (Fig. 9-20a). Segment AB has a length of a and segment BC has a length of b. A concentrated load P acts at a distance 2a/3 from support A, and a uniform load of intensity q acts between points B and C.

Determine the deflection δBδ_{B} at the hinge and the angle of rotation θAθ_{A} at support A (Fig. 9-20d). Note: The beam has constant flexural rigidity EI.

9.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach.
1. Conceptualize: For purposes of analysis, consider the compound beam to consist of two individual beams: a simple beam AB of length a and a cantilever beam BC of length b. The two beams are linked together by a pin connection at B.

2. Categorize: If you separate beam AB from the rest of the structure (Fig. 9-20b), there is a vertical force F at end B equal to 2P/3. This same force acts downward at end B of the cantilever (Fig. 9-20c). Consequently, the cantilever beam BC is subjected to two loads: a uniform load and a concentrated load.

3. Analyze: The deflection at the end of this cantilever (which is the same as the deflection δB\delta_{B} of the hinge) is readily found from Cases 1 and 4 of Table H-1, Appendix H:

δB=qb48EI+Fb33EI\delta_{B}=\frac{q b^{4}}{8 E I}+\frac{F b^{3}}{3 E I}

or, since F = 2P / 3,

δB=qb48EI+2Pb39EI\delta_{B}=\frac{q b^{4}}{8 E I}+\frac{2 P b^{3}}{9 E I}            (9-65)

The angle of rotation θA\theta_{A} at support A (Fig. 9-20d) consists of two parts: an angle BAB′ produced by the downward displacement of the hinge and an additional angle of rotation produced by the bending of beam AB (or beam AB′) as a simple beam. The angle BAB′ is

(θA)1=δBa=qb48aEI+2Pb39aEI\left(\theta_{A}\right)_{1}=\frac{\delta_{B}}{a}=\frac{q b^{4}}{8 a E I}+\frac{2 P b^{3}}{9 a E I}

The angle of rotation at the end of a simple beam with a concentrated load is obtained from Case 5 of Table H-2. The formula given there is

Pab(L+b)6LEI\frac{P a b(L+b)}{6 L E I}

in which L is the length of the simple beam, a is the distance from the left-hand support to the load, and b is the distance from the right-hand support to the load. Thus, in the notation of this example (Fig. 9-20a), the angle of rotation is

(θA)2=P(2a3)(a3)(a+a3)6aEI=4Pa281EI\left(\theta_{A}\right)_{2}=\frac{P\left(\frac{2 a}{3}\right)\left(\frac{a}{3}\right)\left(a+\frac{a}{3}\right)}{6 a E I}=\frac{4 P a^{2}}{81 E I}

Combine the two angles to obtain the total angle of rotation at support A:

θA=(θA)1+(θA)2=qb48aEI+2Pb39aEI+4Pa281EI\theta_{A}=\left(\theta_{A}\right)_{1}+\left(\theta_{A}\right)_{2}=\frac{q b^{4}}{8 a E I}+\frac{2 P b^{3}}{9 a E I}+\frac{4 P a^{2}}{81 E I}          (9-66)

4. Finalize: This example illustrates how the method of superposition can be adapted to handle a seemingly complex situation in a relatively simple manner.

Table H-1
Deflections and Slopes of Cantilever Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
δB=v(L)=\delta_{B}=-v(L)= deflection at end B of the beam (positive downward)
θB=v(L)=\theta_{B}=-v^{\prime}(L)= angle of rotation at end B of the beam (positive clockwise)
EI = constant

 

v=qx224EI(6L24Lx+x2)  v=qx6EI(3L23Lx+x2)v=-\frac{q x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right)   \quad v^{\prime}=\frac{q x}{6 E I}\left(3 L^{2}-3 L x+x^{2}\right)
δB=qL48EI  θB=qL36EI\delta_{B}=\frac{q L^{4}}{8 E I}   \quad \theta_{B}=\frac{q L^{3}}{6 E I}
v=qx224EI(6a24ax+x2)  (0xa)v=-\frac{q x^{2}}{24 E I}\left(6 a^{2}-4 a x+x^{2}\right)   \quad(0 \leq x \leq a)
v=qx6EI(3a23ax+x2)  (0xa)v^{\prime}=-\frac{q x}{6 E I}\left(3 a^{2}-3 a x+x^{2}\right)   \quad(0 \leq x \leq a)
v=qa324EI(4xa)v=qa36EI  (axL)v=-\frac{q a^{3}}{24 E I}(4 x-a) \quad v^{\prime}=-\frac{q a^{3}}{6 E I}   \quad(a \leq x \leq L)
At  x=a:v=qa48EI  v=qa36EIx=a: v=-\frac{q a^{4}}{8 E I}   \quad v^{\prime}=-\frac{q a^{3}}{6 E I}
δB=qa324EI(4La)  θB=qa36EI\delta_{B}=\frac{q a^{3}}{24 E I}(4 L-a)   \quad \theta_{B}=\frac{q a^{3}}{6 E I}
v=qbx212EI(3L+3a2x)v=-\frac{q b x^{2}}{12 E I}(3 L+3 a-2 x)          (0xa)(0 \leq x \leq a)
v=qbx2EI(L+ax)v^{\prime}=-\frac{q b x}{2 E I}(L+a-x)            (0xa)(0 \leq x \leq a)
v=q24EI(x44Lx3+6L2x24a3x+a4)  (axL)v=-\frac{q}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}-4 a^{3} x+a^{4}\right)   \quad(a \leq x \leq L)
v=q6EI(x33Lx2+3L2xa3) (axL)v^{\prime}=-\frac{q}{6 E I}\left(x^{3}-3 L x^{2}+3 L^{2} x-a^{3}\right)  \quad(a \leq x \leq L)
At x=a:  v=qa2b12EI(3L+a) v=qabL2EIx=a:   v=-\frac{q a^{2} b}{12 E I}(3 L+a)  \quad v^{\prime}=-\frac{q a b L}{2 E I}
δB=q24EI(3L44a3L+a4) θB=q6EI(L3a3)\delta_{B}=\frac{q}{24 E I}\left(3 L^{4}-4 a^{3} L+a^{4}\right)  \quad \theta_{B}=\frac{q}{6 E I}\left(L^{3}-a^{3}\right)
v=Px26EI(3Lx) v=Px2EI(2Lx)v=-\frac{P x^{2}}{6 E I}(3 L-x)  \quad v^{\prime}=-\frac{P x}{2 E I}(2 L-x)
δB=PL33EI θB=PL22EI\delta_{B}=\frac{P L^{3}}{3 E I}  \quad \theta_{B}=\frac{P L^{2}}{2 E I}
v=Px26EI(3ax)v=Px2EI(2ax) (0xa)v=-\frac{P x^{2}}{6 E I}(3 a-x) \quad v^{\prime}=-\frac{P x}{2 E I}(2 a-x)  \quad(0 \leq x \leq a)
v=Pa26EI(3xa) v=Pa22EI (axL)v=-\frac{P a^{2}}{6 E I}(3 x-a)  \quad v^{\prime}=-\frac{P a^{2}}{2 E I}  \quad(a \leq x \leq L)
At x=a: v=Pa33EI v=Pa22EIx=a:  \quad v=-\frac{P a^{3}}{3 E I}  \quad v^{\prime}=-\frac{P a^{2}}{2 E I}
δB=Pa26EI(3La) θB=Pa22EI\delta_{B}=\frac{P a^{2}}{6 E I}(3 L-a)  \quad \theta_{B}=\frac{P a^{2}}{2 E I}
v=M0x22EIv=M0xEIv=-\frac{M_{0} x^{2}}{2 E I} \quad v^{\prime}=-\frac{M_{0} x}{E I}
δB=M0L22EI θB=M0LEI\delta_{B}=\frac{M_{0} L^{2}}{2 E I}  \quad \theta_{B}=\frac{M_{0} L}{E I}
v=M0x22EI v=M0xEI(0xa)v=-\frac{M_{0} x^{2}}{2 E I}  \quad v^{\prime}=-\frac{M_{0} x}{E I} \quad(0 \leq x \leq a)
v=M0a2EI(2xa) v=M0aEI(axL)v=-\frac{M_{0} a}{2 E I}(2 x-a)  \quad v^{\prime}=-\frac{M_{0} a}{E I} \quad(a \leq x \leq L)
At x=a: v=M0a22EI v=M0aEIx=a:  \quad v=-\frac{M_{0} a^{2}}{2 E I}  \quad v^{\prime}=-\frac{M_{0} a}{E I}
δB=M0a2EI(2La) θB=M0aEI\delta_{B}=\frac{M_{0} a}{2 E I}(2 L-a)  \quad \theta_{B}=\frac{M_{0} a}{E I}
v=q0x2120LEI(10L310L2x+5Lx2x3)v=-\frac{q_{0} x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)
v=q0x24LEI(4L36L2x+4Lx2x3)v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(4 L^{3}-6 L^{2} x+4 L x^{2}-x^{3}\right)
δB=q0L430EIθB=q0L324EI\delta_{B}=\frac{q_{0} L^{4}}{30 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{24 E I}
v=q0x2120LEI(20L310L2x+x3)v=-\frac{q_{0} x^{2}}{120 L E I}\left(20 L^{3}-10 L^{2} x+x^{3}\right)
v=q0x24LEI(8L36L2x+x3)v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(8 L^{3}-6 L^{2} x+x^{3}\right)
δB=11q0L4120EI θB=q0L38EI\delta_{B}=\frac{11 q_{0} L^{4}}{120 E I}  \quad \theta_{B}=\frac{q_{0} L^{3}}{8 E I}
v=q0L3π4EI(48L3cosπx2L48L3+3π3Lx2π3x3)v=-\frac{q_{0} L}{3 \pi^{4} E I}\left(48 L^{3} \cos \frac{\pi x}{2 L}-48 L^{3}+3 \pi^{3} L x^{2}-\pi^{3} x^{3}\right)
v=q0Lπ3EI(2π2Lxπ2x28L2sinπx2L)v^{\prime}=-\frac{q_{0} L}{\pi^{3} E I}\left(2 \pi^{2} L x-\pi^{2} x^{2}-8L^{2} \sin \frac{\pi x}{2 L}\right)
δB=2q0L43π4EI(π324)  θB=q0L3π3EI(π28)\delta_{B}=\frac{2 q_{0} L^{4}}{3 \pi^{4} E I}\left(\pi^{3}-24\right)   \quad\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}\left(\pi^{2}-8\right)
Table H-2
Deflections and Slopes of Simple Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
δC=v(L/2)=\delta_{C}=-v(L / 2)= deflection at midpoint C of the beam (positive downward)
x1x_{1} = distance from support A to point of maximum deflection
δmax=vmax=\delta_{\max }=-v_{\max }= maximum deflection (positive downward)
θA=v(0)=\theta_{A}=-v^{\prime}(0)= angle of rotation at left-hand end of the beam (positive clockwise)
θB=v(L)=\theta_{B}=v^{\prime}(L)= angle of rotation at right-hand end of the beam (positive counterclockwise)
EI = constant
v=qx24EI(L32Lx2+x3)v=-\frac{q x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)
v=q24EI(L36Lx2+4x3)v^{\prime}=-\frac{q}{24 E I}\left(L^{3}-6 L x^{2}+4 x^{3}\right)
δC=δmax=5qL4384EIθA=θB=qL324EI\delta_{C}=\delta_{\max }=\frac{5 q L^{4}}{384 E I} \quad\theta_{A}=\theta_{B}=\frac{q L^{3}}{24 E I}
v=qx384EI(9L324Lx2+16x3)(0xL2)v=-\frac{q x}{384 E I}\left(9 L^{3}-24 L x^{2}+16 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v=q384EI(9L372Lx2+64x3)(0xL2)v^{\prime}=-\frac{q}{384 E I}\left(9 L^{3}-72 L x^{2}+64 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v=qL384EI(8x324Lx2+17L2xL3)(L2xL)v=-\frac{q L}{384 E I}\left(8 x^{3}-24 L x^{2}+17 L^{2} x-L^{3}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
v=qL384EI(24x248Lx+17L2)(L2xL)v^{\prime}=-\frac{q L}{384 E I}\left(24 x^{2}-48 L x+17 L^{2}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
δC=5qL4768EIθA=3qL3128EIθB=7qL3384EI\delta_{C}=\frac{5 q L^{4}}{768 E I} \quad \theta_{A}=\frac{3 q L^{3}}{128 E I} \quad \theta_{B}=\frac{7 q L^{3}}{384 E I}
v=qx24LEI(a44a3L+4a2L2+2a2x24aLx2+Lx3)(0xa)v=-\frac{q x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}-4 a L x^{2}+L x^{3}\right) \quad(0 \leq x \leq a)
v=q24LEI(a44a3L+4a2L2+6a2x212aLx24Lx3)(0xa)v^{\prime}=-\frac{q}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+6 a^{2} x^{2}-12 a L x^{2}-4 L x^{3}\right) \quad(0 \leq x \leq a)
v=qa224LEI(a2L+4L2x+a2x6Lx2+2x3)v=-\frac{q a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right)             (axL)(a \leq x \leq L)
v=qa224LEI(4L2+a212Lx+6x2)v^{\prime}=-\frac{q a^{2}}{24 L E I}\left(4 L^{2}+a^{2}-12 L x+6 x^{2}\right)              (axL)(a \leq x \leq L)
θA=qa224LEI(2La)2  θB=qa224LEI(2L2a2)\theta_{A}=\frac{q a^{2}}{24 L E I}(2 L-a)^{2}   \quad \theta_{B}=\frac{q a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right)
v=Px48EI(3L24x2)v=P16EI(L24x2)(0xL2)v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{P}{16 E I}\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
δC=δmax=PL348EIθA=θB=PL216EI\delta_{C}=\delta_{\max }=\frac{P L^{3}}{48 E I} \quad \theta_{A}=\theta_{B}=\frac{P L^{2}}{16 E I}
v=Pbx6LEI(L2b2x2)v=Pb6LEI(L2b23x2)(0xa)v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P b}{6 L E I}\left(L^{2}-b^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
θA=Pab(L+b)6LEIθB=Pab(L+a)6LEI\theta_{A}=\frac{P a b(L+b)}{6 L E I} \quad \theta_{B}=\frac{P a b(L+a)}{6 L E I}
 If ab,δC=Pb(3L24b2)48EI If ab,δC=Pa(3L24a2)48EI\text { If } a \geq b, \quad \delta_{C}=\frac{P b\left(3 L^{2}-4 b^{2}\right)}{48 E I} \quad \text { If } a \leq b, \quad \delta_{C}=\frac{P a\left(3 L^{2}-4 a^{2}\right)}{48 E I}
 If ab,x1=L2b23 and δmax=Pb(L2b2)3/293LEI\text { If } a \geq b, \quad x_{1}=\sqrt{\frac{L^{2}-b^{2}}{3}} \quad \text { and } \quad \delta_{\max }=\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I}
v=Px6EI(3aL3a2x2)v=P2EI(aLa2x2)(0xa)v=-\frac{P x}{6 E I}\left(3 a L-3 a^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P}{2 E I}\left(a L-a^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v=Pa6EI(3Lx3x2a2)v=Pa2EI(L2x)(axLa)v=-\frac{P a}{6 E I}\left(3 L x-3 x^{2}-a^{2}\right) \quad v^{\prime}=-\frac{P a}{2 E I}(L-2 x) \quad(a \leq x \leq L-a)
δC=δmax=Pa24EI(3L24a2)θA=θB=Pa(La)2EI\delta_{C}=\delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \quad \theta_{A}=\theta_{B}=\frac{P a(L-a)}{2 E I}
v=M0x6LEI(2L23Lx+x2)v=M06LEI(2L26Lx+3x2)v=-\frac{M_{0} x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{6 L E I}\left(2 L^{2}-6 L x+3 x^{2}\right)
δC=M0L216EIθA=M0L3EIθB=M0L6EI\delta_{C}=\frac{M_{0} L^{2}}{16 E I} \quad \theta_{A}=\frac{M_{0} L}{3 E I} \quad \theta_{B}=\frac{M_{0} L}{6 E I}
x1=L(133) and δmax=M0L293EIx_{1}=L\left(1-\frac{\sqrt{3}}{3}\right) \text { and } \delta_{\max }=\frac{M_{0} L^{2}}{9 \sqrt{3} E I}
v=M0x24LEI(L24x2)v=M024LEI(L212x2)(0xL2)v=-\frac{M_{0} x}{24 L E I}\left(L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{24 L E I}\left(L^{2}-12 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
δC=0θA=M0L24EIθB=M0L24EI\delta_{C}=0 \quad \theta_{A}=\frac{M_{0} L}{24 E I} \quad \theta_{B}=-\frac{M_{0} L}{24 E I}
v=M0x6LEI(6aL3a22L2x2)(0xa)v=-\frac{M_{0} x}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v=M06LEI(6aL3a22L23x2)(0xa)v^{\prime}=-\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
 At x=a:v=M0ab3LEI(2aL)v=M03LEI(3aL3a2L2)\text { At } x=a: \quad v=-\frac{M_{0} a b}{3 L E I}(2 a-L) \quad v^{\prime} =-\frac{M_{0}}{3 L E I}\left(3 a L-3 a^{2}-L^{2}\right)
θA=M06LEI(6aL3a22L2)θB=M06LEI(3a2L2)\theta_{A}=\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}\right) \quad \theta_{B}=\frac{M_{0}}{6 L E I}\left(3 a^{2}-L^{2}\right)
v=M0x2EI(Lx)v=M02EI(L2x)v=-\frac{M_{0} x}{2 E I}(L-x) \quad v^{\prime}=-\frac{M_{0}}{2 E I}(L-2 x)
δC=δmax=M0L28EIθA=θB=M0L2EI\delta_{C}=\delta_{\max }=\frac{M_{0} L^{2}}{8 E I} \quad \theta_{A}=\theta_{B}=\frac{M_{0} L}{2 E I}
v=q0x360LEI(7L410L2x2+3x4)v=-\frac{q_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)
v=q0360LEI(7L430L2x2+15x4)v^{\prime}=-\frac{q_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right)
δC=5q0L4768EIθA=7q0L3360EIθB=q0L345EI\delta_{C}=\frac{5 q_{0} L^{4}}{768 E I} \quad \theta_{A}=\frac{7 q_{0} L^{3}}{360 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{45 E I}
x1=0.5193Lδmax=0.00652q0L4EIx_{1}=0.5193 L \quad \delta_{\max }=0.00652 \frac{q_{0} L^{4}}{E I}
v=q0x960LEI(5L24x2)2(0xL2)v=-\frac{q_{0} x}{960 L E I}\left(5 L^{2}-4 x^{2}\right)^{2} \quad\left(0 \leq x \leq \frac{L}{2}\right)
v=q0192LEI(5L24x2)(L24x2)(0xL2)v^{\prime}=-\frac{q_{0}}{192 L E I}\left(5 L^{2}-4 x^{2}\right)\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
δC=δmax=q0L4120EIθA=θB=5q0L3192EI\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{120 E I} \quad \theta_{A}=\theta_{B}=\frac{5 q_{0} L^{3}}{192 E I}
v=q0L4π4EIsinπxLv=q0L3π3EIcosπxLv=-\frac{q_{0} L^{4}}{\pi^{4} E I} \sin \frac{\pi x}{L} \quad v^{\prime}=-\frac{q_{0} L^{3}}{\pi^{3} E I} \cos \frac{\pi x}{L}
δC=δmax=q0L4π4EIθA=θB=q0L3π3EI\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{\pi^{4} E I} \quad \theta_{A}=\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}

Related Answered Questions