Question 9.8: A compound beam ABC has a roller support at A, an internal h...
A compound beam ABC has a roller support at A, an internal hinge (that is, moment release) at B, and a fixed support at C (Fig. 9-20a). Segment AB has a length of a and segment BC has a length of b. A concentrated load P acts at a distance 2a/3 from support A, and a uniform load of intensity q acts between points B and C.
Determine the deflection δB at the hinge and the angle of rotation θA at support A (Fig. 9-20d). Note: The beam has constant flexural rigidity EI.

Learn more on how we answer questions.
Use a four-step problem-solving approach.
1. Conceptualize: For purposes of analysis, consider the compound beam to consist of two individual beams: a simple beam AB of length a and a cantilever beam BC of length b. The two beams are linked together by a pin connection at B.
2. Categorize: If you separate beam AB from the rest of the structure (Fig. 9-20b), there is a vertical force F at end B equal to 2P/3. This same force acts downward at end B of the cantilever (Fig. 9-20c). Consequently, the cantilever beam BC is subjected to two loads: a uniform load and a concentrated load.
3. Analyze: The deflection at the end of this cantilever (which is the same as the deflection δB of the hinge) is readily found from Cases 1 and 4 of Table H-1, Appendix H:
δB=8EIqb4+3EIFb3or, since F = 2P / 3,
δB=8EIqb4+9EI2Pb3 (9-65)
The angle of rotation θA at support A (Fig. 9-20d) consists of two parts: an angle BAB′ produced by the downward displacement of the hinge and an additional angle of rotation produced by the bending of beam AB (or beam AB′) as a simple beam. The angle BAB′ is
(θA)1=aδB=8aEIqb4+9aEI2Pb3The angle of rotation at the end of a simple beam with a concentrated load is obtained from Case 5 of Table H-2. The formula given there is
6LEIPab(L+b)in which L is the length of the simple beam, a is the distance from the left-hand support to the load, and b is the distance from the right-hand support to the load. Thus, in the notation of this example (Fig. 9-20a), the angle of rotation is
(θA)2=6aEIP(32a)(3a)(a+3a)=81EI4Pa2Combine the two angles to obtain the total angle of rotation at support A:
θA=(θA)1+(θA)2=8aEIqb4+9aEI2Pb3+81EI4Pa2 (9-66)
4. Finalize: This example illustrates how the method of superposition can be adapted to handle a seemingly complex situation in a relatively simple manner.
Table H-1 | |
Deflections and Slopes of Cantilever Beams | |
![]() |
Notation: |
v = deflection in the y direction (positive upward) | |
v′ = dv/dx = slope of the deflection curve | |
δB=−v(L)= deflection at end B of the beam (positive downward) | |
θB=−v′(L)= angle of rotation at end B of the beam (positive clockwise) | |
EI = constant | |
![]()
|
v=−24EIqx2(6L2−4Lx+x2) v′=6EIqx(3L2−3Lx+x2) |
δB=8EIqL4 θB=6EIqL3 | |
![]() |
v=−24EIqx2(6a2−4ax+x2) (0≤x≤a) |
v′=−6EIqx(3a2−3ax+x2) (0≤x≤a) | |
v=−24EIqa3(4x−a)v′=−6EIqa3 (a≤x≤L) | |
At x=a:v=−8EIqa4 v′=−6EIqa3 | |
δB=24EIqa3(4L−a) θB=6EIqa3 | |
![]() |
v=−12EIqbx2(3L+3a−2x) (0≤x≤a) |
v′=−2EIqbx(L+a−x) (0≤x≤a) | |
v=−24EIq(x4−4Lx3+6L2x2−4a3x+a4) (a≤x≤L) | |
v′=−6EIq(x3−3Lx2+3L2x−a3) (a≤x≤L) | |
At x=a: v=−12EIqa2b(3L+a) v′=−2EIqabL | |
δB=24EIq(3L4−4a3L+a4) θB=6EIq(L3−a3) | |
![]() |
v=−6EIPx2(3L−x) v′=−2EIPx(2L−x) |
δB=3EIPL3 θB=2EIPL2 | |
![]() |
v=−6EIPx2(3a−x)v′=−2EIPx(2a−x) (0≤x≤a) |
v=−6EIPa2(3x−a) v′=−2EIPa2 (a≤x≤L) | |
At x=a: v=−3EIPa3 v′=−2EIPa2 | |
δB=6EIPa2(3L−a) θB=2EIPa2 | |
![]() |
v=−2EIM0x2v′=−EIM0x |
δB=2EIM0L2 θB=EIM0L | |
![]() |
v=−2EIM0x2 v′=−EIM0x(0≤x≤a) |
v=−2EIM0a(2x−a) v′=−EIM0a(a≤x≤L) | |
At x=a: v=−2EIM0a2 v′=−EIM0a | |
δB=2EIM0a(2L−a) θB=EIM0a | |
![]() |
v=−120LEIq0x2(10L3−10L2x+5Lx2−x3) |
v′=−24LEIq0x(4L3−6L2x+4Lx2−x3) | |
δB=30EIq0L4θB=24EIq0L3 | |
![]() |
v=−120LEIq0x2(20L3−10L2x+x3) |
v′=−24LEIq0x(8L3−6L2x+x3) | |
δB=120EI11q0L4 θB=8EIq0L3 | |
![]() |
v=−3π4EIq0L(48L3cos2Lπx−48L3+3π3Lx2−π3x3) |
v′=−π3EIq0L(2π2Lx−π2x2−8L2sin2Lπx) | |
δB=3π4EI2q0L4(π3−24) θB=π3EIq0L3(π2−8) |
Table H-2 | ||
Deflections and Slopes of Simple Beams | ||
![]() |
Notation: | |
v = deflection in the y direction (positive upward) | ||
v′ = dv/dx = slope of the deflection curve | ||
δC=−v(L/2)= deflection at midpoint C of the beam (positive downward) | ||
x1 = distance from support A to point of maximum deflection | ||
δmax=−vmax= maximum deflection (positive downward) | ||
θA=−v′(0)= angle of rotation at left-hand end of the beam (positive clockwise) | ||
θB=v′(L)= angle of rotation at right-hand end of the beam (positive counterclockwise) | ||
EI = constant | ||
![]() |
v=−24EIqx(L3−2Lx2+x3) | |
v′=−24EIq(L3−6Lx2+4x3) | ||
δC=δmax=384EI5qL4θA=θB=24EIqL3 | ||
![]() |
v=−384EIqx(9L3−24Lx2+16x3)(0≤x≤2L) | |
v′=−384EIq(9L3−72Lx2+64x3)(0≤x≤2L) | ||
v=−384EIqL(8x3−24Lx2+17L2x−L3)(2L≤x≤L) | ||
v′=−384EIqL(24x2−48Lx+17L2)(2L≤x≤L) | ||
δC=768EI5qL4θA=128EI3qL3θB=384EI7qL3 | ||
![]() |
v=−24LEIqx(a4−4a3L+4a2L2+2a2x2−4aLx2+Lx3)(0≤x≤a) | |
v′=−24LEIq(a4−4a3L+4a2L2+6a2x2−12aLx2−4Lx3)(0≤x≤a) | ||
v=−24LEIqa2(−a2L+4L2x+a2x−6Lx2+2x3) (a≤x≤L) | ||
v′=−24LEIqa2(4L2+a2−12Lx+6x2) (a≤x≤L) | ||
θA=24LEIqa2(2L−a)2 θB=24LEIqa2(2L2−a2) | ||
![]() |
v=−48EIPx(3L2−4x2)v′=−16EIP(L2−4x2)(0≤x≤2L) | |
δC=δmax=48EIPL3θA=θB=16EIPL2 | ||
![]() |
v=−6LEIPbx(L2−b2−x2)v′=−6LEIPb(L2−b2−3x2)(0≤x≤a) | |
θA=6LEIPab(L+b)θB=6LEIPab(L+a) | ||
If a≥b,δC=48EIPb(3L2−4b2) If a≤b,δC=48EIPa(3L2−4a2) | ||
If a≥b,x1=3L2−b2 and δmax=93LEIPb(L2−b2)3/2 | ||
![]() |
v=−6EIPx(3aL−3a2−x2)v′=−2EIP(aL−a2−x2)(0≤x≤a) | |
v=−6EIPa(3Lx−3x2−a2)v′=−2EIPa(L−2x)(a≤x≤L−a) | ||
δC=δmax=24EIPa(3L2−4a2)θA=θB=2EIPa(L−a) | ||
![]() |
v=−6LEIM0x(2L2−3Lx+x2)v′=−6LEIM0(2L2−6Lx+3x2) | |
δC=16EIM0L2θA=3EIM0LθB=6EIM0L | ||
x1=L(1−33) and δmax=93EIM0L2 | ||
![]() |
v=−24LEIM0x(L2−4x2)v′=−24LEIM0(L2−12x2)(0≤x≤2L) | |
δC=0θA=24EIM0LθB=−24EIM0L | ||
![]() |
v=−6LEIM0x(6aL−3a2−2L2−x2)(0≤x≤a) | |
v′=−6LEIM0(6aL−3a2−2L2−3x2)(0≤x≤a) | ||
At x=a:v=−3LEIM0ab(2a−L)v′=−3LEIM0(3aL−3a2−L2) | ||
θA=6LEIM0(6aL−3a2−2L2)θB=6LEIM0(3a2−L2) | ||
![]() |
v=−2EIM0x(L−x)v′=−2EIM0(L−2x) | |
δC=δmax=8EIM0L2θA=θB=2EIM0L | ||
![]() |
v=−360LEIq0x(7L4−10L2x2+3x4) | |
v′=−360LEIq0(7L4−30L2x2+15x4) | ||
δC=768EI5q0L4θA=360EI7q0L3θB=45EIq0L3 | ||
x1=0.5193Lδmax=0.00652EIq0L4 | ||
![]() |
v=−960LEIq0x(5L2−4x2)2(0≤x≤2L) | |
v′=−192LEIq0(5L2−4x2)(L2−4x2)(0≤x≤2L) | ||
δC=δmax=120EIq0L4θA=θB=192EI5q0L3 | ||
![]() |
v=−π4EIq0L4sinLπxv′=−π3EIq0L3cosLπx | |
δC=δmax=π4EIq0L4θA=θB=π3EIq0L3 |