Question 9.4: Given the function (a) Sketch the function. (b) Determine it...

Given the function

f(x)={0, for            −5x0,3,for                    0x5f(x)=\begin{cases} 0, &  for                         −5 ≤ x ≤ 0,\\ 3, & for                     0 ≤ x ≤ 5 \end{cases}                    period 2l = 10

(a) Sketch the function.
(b) Determine its Fourier series.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

f(x)={0, for            −5x0,3,for                     0x5f(x)=\begin{cases} 0, &  for                         −5 ≤ x ≤ 0,\\ 3, & for                      0 ≤ x ≤ 5 \end{cases}                    period 2l = 10

(b) For period 2l = 10 and l = 5, we choose the interval a to a + 2l to be −5 to 5, i.e., a =−5:

an=1laa+2lf(x) cosnπxldx=1555f(x) cosnπxldxa_{n} = \frac{1}{l} \int\limits_{a}^{a+2l}{f (x)  cos \frac{nπx}{l} dx} = \frac{1}{5} \int\limits_{-5}^{5}{f (x)  cos \frac{nπx}{l}dx}

 

=15{50(0) cosnπx5dx+053 cosnπx5dx}=3505cosnπx5dx= \frac{1}{5} \left\{\int\limits_{-5}^{0}{(0)  cos \frac{nπx}{5} dx} + \int\limits_{0}^{5}{3  cos \frac{nπx}{5} dx} \right\}= \frac{3}{5} \int\limits_{0}^{5}{cos \frac{nπx}{5}dx}

 

=35{5nπsinnπx5}05=0      for      n0.= \frac{3}{5} \left\{\frac{5}{nπ} sin \frac{nπx}{5}\right\}|^{5}_{0}=0       for             n ≠ 0.

For n = 0, one has an=a0=(3/5)05cos(0πx/5)dx=(3/5) 05dx=3.a_{n} = a_{0} = (3/5) \int_{0}^{5}{cos(0πx/5)dx} = (3/5)  \int_{0}^{5}{ dx} = 3.
Furthermore,

bn=1laa+2lf(x) sinnπxldx=1555f(x) sinnπxldxb_{n} = \frac{1}{l} \int\limits_{a}^{a+2l}{ f (x)  sin \frac{nπx}{l} dx} = \frac{1}{5} \int\limits_{-5}^{5}{ f (x)  sin \frac{nπx}{l} dx}

 

=15{50(0) sinnπx5dx+053 sinnπx5dx}=3505sinnπx5dx= \frac{1}{5} \left\{\int\limits_{-5}^{0}{(0)  sin \frac{nπx}{5} dx} + \int\limits_{0}^{5}{3  sin \frac{nπx}{5} dx} \right\}= \frac{3}{5} \int\limits_{0}^{5}{sin \frac{nπx}{5}dx}

 

=35(5nπcosnπx5)05=3nπ(1cosnπ).= \frac{3}{5} \left(− \frac{5}{nπ} cos \frac{nπx}{5}\right)|^{5}_{0} = \frac{3}{nπ} (1 −cos nπ).

Thus,

f(x)=32+n=13nπ(1cosnπ)sin(nπx5),f (x) = \frac{3}{2}+ \sum\limits_{n=1}^{∞}{\frac{3}{nπ} (1 − cos nπ) sin \left(\frac{nπx}{5}\right)},

i.e.,

f(x)=32+6π(sinπx5+13sin3πx5+15sin5πx5+).f (x) = \frac{3}{2}+ \frac{6}{π} \left(sin \frac{πx}{5}+ \frac{1}{3}sin \frac{3πx}{5} + \frac{1}{5}sin \frac{5πx}{5}+· · ·\right).
9.3

Related Answered Questions