Question 9.5: Which trajectory of the mass of a mathematical pendulum yiel...

Which trajectory of the mass of a mathematical pendulum yields a pendulum period that is independent of the amplitude?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We consider Fig. 9.4. From energy conservation, we have

\frac{m}{2} \dot{s}^{2}(y)+gmy = mgh                             (9.20)

or

\dot{s}(y) = \sqrt{2g(h−y)}.                                (9.21)

From this, one can calculate the period by separation of the variables:

\frac{1}{4} T = \int\limits_{0}^{T/4}{dt} =\int\limits_{0}^{s(h)}{\frac{ ds}{\sqrt{2g(h−y)}}}=\int\limits_{0}^{h}{\frac{(ds/dy)dy}{\sqrt{2g(h−y)}}}.                                                 (9.22)

Using the variable u = y/h, (9.22) changes to

\frac{T}{4} = \int\limits_{0}^{1}{\frac{(ds/dy) \sqrt{h}du}{\sqrt{2g(1− u)}}}.                                    (9.23)

We now require that T be independent of the maximum height h:

\frac{dT}{dh}= 0                    for all h.                                     (9.24)

Thus, we get from (9.23) (s^{′} ≡ ds/dy)

\frac{d}{dh} \int\limits_{0}^{1}{\frac{s^{′}\sqrt{h}du}{\sqrt{2g(1 −u)}}}=  \int\limits_{0}^{1}{\frac{du}{\sqrt{2g(1− u)}}} \left(\frac{1}{2}h^{−1/2}s^{′}+\sqrt{h} \frac{ds^{′}}{dh}\right)= 0                     for all h.                                                 (9.25)

With the condition that we keep the dimensionless variable u = y/h constant, we can rewrite the derivative with respect to h as a derivative with respect to y,

\frac{ds^{′}}{dh}=\frac{uds^{′}}{d(uh)}= u \frac{ds^{′}}{dy}= us^{″},                                           (9.26)

and thus, we can transform (9.25) into

\int\limits_{0}^{1}{\frac{du}{\sqrt{8g(1−u)}}(s^{′} + 2ys^{″}) \frac{1} {\sqrt{h}}}= 0                for all h.                                        (9.27)

Any periodic function f (u) satisfying \int_{0}^{1}{ f (u)du} = 0 can generally be expanded into
a Fourier series:

f (u) =\sum\limits_{m=1}^{∞}{[a_{m} sin(2πmu) + b_{m} cos(2πmu)]} .                                        (9.28)

Therefore, from (9.27) it follows that

s^{″} + \frac{1}{2y}s^{′} = \frac{ \sqrt{8gh(1 −u)}}{2y} \sum\limits_{m=1}^{∞}{a_{m}  sin(2πmu) +b_{m}  cos(2πmu)}

 

=\frac{ \sqrt{8gh(1 −u)}}{2y} \sum\limits_{m=1}^{∞}{\left(a_{m}  sin\left(2πm \frac{y}{h}\right) +b_{m}  cos \left(2πm \frac{y}{h}\right)\right)}.                              (9.29)

This holds for all values of h. The left-hand side of (9.29) does not contain h; therefore, the right-hand side must be independent of h too. This holds only for a_{m} = b_{m} = 0 (for all m), as we shall prove now.

To have the right-hand side of (9.29) independent of h, we must have

\sum\limits_{m=1}^{∞}{ \left[a_{m}  sin \left(2πm \frac{y}{h}\right) + b_{m}  cos  \left(2πm \frac{y}{h}\right) \right]}= \frac{constant  · (y/h)h^{1/2}}{\sqrt{8g(1 −y/h)}}                             (9.30)

or

\sum\limits_{m=1}^{∞}{ \left[a_{m}  sin (2πmu) +b_{m} cos  (2πmu)\right]} = \frac{u}{\sqrt{1−u}} \frac{h^{1/2}}{\sqrt{8g}}C.                                        (9.31)

By integrating (9.31) from 0 to 1, we obtain

0 = \frac{h^{1/2}}{\sqrt{8g}}C \int\limits_{0}^{1}{\frac{u}{\sqrt{1− u}}du}= \frac{4}{3} \frac{h^{1/2}}{\sqrt{8g}}C,                                 (9.32)

thus, C = 0. (This reflects the fact that u/\sqrt{1− u} cannot be expanded into a Fourier series à la (9.31).)

Inserting this result C = 0 again into (9.30), we have a_{m} = b_{m} = 0  ∀m, and thus, from (9.29)

s^{″} + \frac{s^{′}}{2y}= 0.                                    (9.33)

From this, one finds by integrating once

\frac{s^{″} }{s^{′}}=− \frac{1}{2y}        ⇒           s^{′} ≡ \frac{ds}{dy} = \widetilde{C} e^{−(1/2) ln  y} =\frac{\widetilde{C}}{\sqrt{y}}.                                 (9.34)

The constant is usually denoted by

\widetilde{C}=\sqrt{\frac{l}{2}},                                      (9.35)

so that we have to solve

\frac{ds}{dy}=\sqrt{\frac{l}{2}} \frac{1}{\sqrt{y}}.                                   (9.36)

This is the differential equation of a cycloid.²


² See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin (2004), Problem 24.4.

9.4

Related Answered Questions

Question: 9.4

Verified Answer:

(a) f(x)=\begin{cases} 0, &  for       ...
Question: 9.2

Verified Answer:

The Fourier coefficients are a_{0} = \frac{...