Question 10.3: A two-span continuous beam ABC supports a uniform load of in...

A two-span continuous beam ABC supports a uniform load of intensity q, as shown in Fig. 10-14a. Each span of the beam has a length L. Using the method of superposition, determine all reactions for this beam.

10.3
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach.
1. Conceptualize: This beam has three unknown reactions (R_{A} , R_{B} ,  and  R_{C}). Since there are two equations of equilibrium for the beam as a whole, it is statically indeterminate to the first degree. For convenience, select the reaction R_{B} at the middle support as the redundant.

2. Categorize:
Equations of equilibrium: Express the reactions R_{A}  and  R_{C} in terms of the redundant R_{B} by means of two equations of quilibrium. The first equation, which is for equilibrium of moments about point B, shows that R_{A}  and  R_{C} are equal. The second equation, which is for equilibrium in the vertical direction, yields

R_{A}=R_{C}=q L-\frac{R_{B}}{2}            (a)

Equation of compatibility: Because the reaction R_{B} is selected as the redundant, the released structure is a simple beam with supports at A and C (Fig. 10-14b). The deflections at point B in the released structure due to the uniform load q and the redundant R_{B} are shown in Figs. 10-14c and d, respectively. Note that the deflections are denoted (\delta_{B} )_{1}   and   (\delta_{B} )_{2}. The superposition of these deflections must produce the deflection \delta_{B} in the original beam at point B. Since the latter deflection is equal to zero, the equation of compatibility is

\delta_{B}=\left(\delta_{B}\right)_{1}-\left(\delta_{B}\right)_{2}=0              (b)

in which the deflection (\delta_{B} )_{1} is positive downward, and the deflection (\delta_{B} )_{2} is positive upward.

Force-displacement relations: The deflection (\delta_{B} )_{1} caused by the uniform load acting on the released structure (Fig. 10-14c) is obtained from Table H-2, Case 1 as

\left(\delta_{B}\right)_{1}=\frac{5 q(2 L)^{4}}{384 E I}=\frac{5 q L^{4}}{24 E I}

where 2L is the length of the released structure. The deflection (\delta_{B} )_{2} produced by the redundant (Fig. 10-14d) is

\left(\delta_{B}\right)_{2}=\frac{R_{B}(2 L)^{3}}{48 E I}=\frac{R_{B} L^{3}}{6 E I}

as obtained from Table H-2, Case 4.

3. Analyze:
Reactions: The equation of compatibility pertaining to the vertical deflection at point B [Eq. (b)] now becomes

\delta_{B}=\frac{5 q L^{4}}{24 E I}-\frac{R_{B} L^{3}}{6 E I}=0              (c)

from which the reaction at the middle support is

R_{B}=\frac{5 q L}{4}             (10-28)

The other reactions are obtained from Eq. (a):

R_{A}=R_{C}=\frac{3 q L}{8}            (10-29)

With the reactions known, the shear forces, bending moments, stresses, and deflections can be found without difficulty.

4. Finalize: The purpose of this example is to demonstrate the method of superposition, so all steps were described in the analysis. However, this particular beam (Fig. 10-14a) can be analyzed by inspection because of the symmetry of the beam and its loading.
From symmetry, the slope of the beam at the middle support must be zero; therefore, each half of the beam is in the same condition as a propped cantilever beam with a uniform load (see, for instance, Fig. 10-6). Consequently, all of the previous results for a propped cantilever beam with a uniform load [Eqs. (10-1) to (10-12)] can be adapted immediately to the continuous beam of Fig. 10-14a.

R_{B}=\frac{3 q L}{8}           (10-1)

\theta_{B}=v^{\prime}(L)=\frac{q L^{3}}{48 E I}            (10-12)

Table H-2
Deflections and Slopes of Simple Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
\delta_{C}=-v(L / 2)= deflection at midpoint C of the beam (positive downward)
x_{1} = distance from support A to point of maximum deflection
\delta_{\max }=-v_{\max }= maximum deflection (positive downward)
\theta_{A}=-v^{\prime}(0)= angle of rotation at left-hand end of the beam (positive clockwise)
\theta_{B}=v^{\prime}(L)= angle of rotation at right-hand end of the beam (positive counterclockwise)
EI = constant
v=-\frac{q x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)
v^{\prime}=-\frac{q}{24 E I}\left(L^{3}-6 L x^{2}+4 x^{3}\right)
\delta_{C}=\delta_{\max }=\frac{5 q L^{4}}{384 E I} \quad\theta_{A}=\theta_{B}=\frac{q L^{3}}{24 E I}
v=-\frac{q x}{384 E I}\left(9 L^{3}-24 L x^{2}+16 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v^{\prime}=-\frac{q}{384 E I}\left(9 L^{3}-72 L x^{2}+64 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v=-\frac{q L}{384 E I}\left(8 x^{3}-24 L x^{2}+17 L^{2} x-L^{3}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
v^{\prime}=-\frac{q L}{384 E I}\left(24 x^{2}-48 L x+17 L^{2}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
\delta_{C}=\frac{5 q L^{4}}{768 E I} \quad \theta_{A}=\frac{3 q L^{3}}{128 E I} \quad \theta_{B}=\frac{7 q L^{3}}{384 E I}
v=-\frac{q x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}-4 a L x^{2}+L x^{3}\right) \quad(0 \leq x \leq a)
v^{\prime}=-\frac{q}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+6 a^{2} x^{2}-12 a L x^{2}-4 L x^{3}\right) \quad(0 \leq x \leq a)
v=-\frac{q a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right)             (a \leq x \leq L)
v^{\prime}=-\frac{q a^{2}}{24 L E I}\left(4 L^{2}+a^{2}-12 L x+6 x^{2}\right)              (a \leq x \leq L)
\theta_{A}=\frac{q a^{2}}{24 L E I}(2 L-a)^{2}   \quad \theta_{B}=\frac{q a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right)
v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{P}{16 E I}\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=\delta_{\max }=\frac{P L^{3}}{48 E I} \quad \theta_{A}=\theta_{B}=\frac{P L^{2}}{16 E I}
v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P b}{6 L E I}\left(L^{2}-b^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
\theta_{A}=\frac{P a b(L+b)}{6 L E I} \quad \theta_{B}=\frac{P a b(L+a)}{6 L E I}
\text { If } a \geq b, \quad \delta_{C}=\frac{P b\left(3 L^{2}-4 b^{2}\right)}{48 E I} \quad \text { If } a \leq b, \quad \delta_{C}=\frac{P a\left(3 L^{2}-4 a^{2}\right)}{48 E I}
\text { If } a \geq b, \quad x_{1}=\sqrt{\frac{L^{2}-b^{2}}{3}} \quad \text { and } \quad \delta_{\max }=\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I}
v=-\frac{P x}{6 E I}\left(3 a L-3 a^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P}{2 E I}\left(a L-a^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v=-\frac{P a}{6 E I}\left(3 L x-3 x^{2}-a^{2}\right) \quad v^{\prime}=-\frac{P a}{2 E I}(L-2 x) \quad(a \leq x \leq L-a)
\delta_{C}=\delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \quad \theta_{A}=\theta_{B}=\frac{P a(L-a)}{2 E I}
v=-\frac{M_{0} x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{6 L E I}\left(2 L^{2}-6 L x+3 x^{2}\right)
\delta_{C}=\frac{M_{0} L^{2}}{16 E I} \quad \theta_{A}=\frac{M_{0} L}{3 E I} \quad \theta_{B}=\frac{M_{0} L}{6 E I}
x_{1}=L\left(1-\frac{\sqrt{3}}{3}\right) \text { and } \delta_{\max }=\frac{M_{0} L^{2}}{9 \sqrt{3} E I}
v=-\frac{M_{0} x}{24 L E I}\left(L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{24 L E I}\left(L^{2}-12 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=0 \quad \theta_{A}=\frac{M_{0} L}{24 E I} \quad \theta_{B}=-\frac{M_{0} L}{24 E I}
v=-\frac{M_{0} x}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v^{\prime}=-\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
\text { At } x=a: \quad v=-\frac{M_{0} a b}{3 L E I}(2 a-L) \quad v^{\prime}=-\frac{M_{0}}{3 L E I}\left(3 a L-3 a^{2}-L^{2}\right)
\theta_{A}=\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}\right) \quad \theta_{B}=\frac{M_{0}}{6 L E I}\left(3 a^{2}-L^{2}\right)
v=-\frac{M_{0} x}{2 E I}(L-x) \quad v^{\prime}=-\frac{M_{0}}{2 E I}(L-2 x)
\delta_{C}=\delta_{\max }=\frac{M_{0} L^{2}}{8 E I} \quad \theta_{A}=\theta_{B}=\frac{M_{0} L}{2 E I}
v=-\frac{q_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)
v^{\prime}=-\frac{q_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right)
\delta_{C}=\frac{5 q_{0} L^{4}}{768 E I} \quad \theta_{A}=\frac{7 q_{0} L^{3}}{360 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{45 E I}
x_{1}=0.5193 L \quad \delta_{\max }=0.00652 \frac{q_{0} L^{4}}{E I}
v=-\frac{q_{0} x}{960 L E I}\left(5 L^{2}-4 x^{2}\right)^{2} \quad\left(0 \leq x \leq \frac{L}{2}\right)
v^{\prime}=-\frac{q_{0}}{192 L E I}\left(5 L^{2}-4 x^{2}\right)\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{120 E I} \quad \theta_{A}=\theta_{B}=\frac{5 q_{0} L^{3}}{192 E I}
v=-\frac{q_{0} L^{4}}{\pi^{4} E I} \sin \frac{\pi x}{L} \quad v^{\prime}=-\frac{q_{0} L^{3}}{\pi^{3} E I} \cos \frac{\pi x}{L}
\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{\pi^{4} E I} \quad \theta_{A}=\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}
10.1

Related Answered Questions