Question 12.6: A rigid body consists of three mass points that are connecte...

A rigid body consists of three mass points that are connected to the z-axis by rigid massless bars (see Fig. 12.15).
(a) Find the elements of the tensor of inertia relative to the x, y, z-system.
(b) Calculate the ellipsoid of inertia with respect to the origin 0, and the moment of inertia of the entire body with respect to the axis 0a.

12.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The elements of the tensor of inertia relative to the x,y,z-system are

Θ_{xx} =\sum\limits_{i}{m_{i}(y^{2}_{i}+z^{2}_{i} )}

 

= m_{1}(y^{2}_{1}+ z^{2}_{1})+m_{2}(y^{2}_{2}+ z^{2}_{2})+ m_{3}(y^{2}_{3}+z^{3}_{3}),

and after inserting the numerical values from Fig. 12.15, one has

Θ_{xx}= 100(144+25)+ 200(64+225)+ 150(144+196) (g cm^{2})

 

=125.7 (kg  cm^{2}).

Likewise, one obtains

Θ_{yy} = 117.5 (kg  cm^{2})    and     Θ_{zz} = 104.75 (kg  cm^{2}).

For the deviation moments of the tensor of inertia, it follows that

Θ_{xy} =− \sum\limits_{i}{m_{i}(x_{i}y_{i})}

 

= 100(12 · 10)−200(10 · 8)+ 150(11 · 14) (g  cm^{2}) = 19.1 (kg  cm^{2}),

and likewise,

Θ_{xz} =−44.8 (kg  cm^{2})   and     Θ_{yz} = 4.800(kg  cm^{2}).

(b) From (a) one now immediately obtains for the ellipsoid of inertia with respect to the origin 0 (see (12.30))

Θ_{n}= Θ_{xx}  cos^{2}  α +Θ_{yy}  cos^{2}   β +Θ_{zz}  cos^{2}  γ

+2Θ_{xy}  cos  α  cos  β +2Θ_{xz}  cos  α  cos  γ + 2Θ_{yz} cos  β  cos  γ.                               (12.30)

 

Θ= Θ_{xx}  cos^{2}  α +Θ_{yy}  cos^{2}   β +Θ_{zz}  cos^{2}  γ

+2Θ_{xy}  cos  α  cos  β +2Θ_{xz}  cos  α  cos  γ + 2Θ_{yz} cos  β  cos  γ.                               (12.47)

To calculate the moment of inertia Θ_{0a}, we evaluate the direction cosines with the coordinates given in Fig. 12.15,

cos  α =\frac{−6}{ \sqrt{6^{2} + 8^{2} +20^{2}}}=−0.268,

 

cos  β = \frac{8}{\sqrt{6^{2} + 8^{2} +20^{2}}}= 0.358,

and

cos  γ =\frac{20}{\sqrt{6^{2} +8^{2} + 20^{2}}}= 0.895.

By inserting into (12.47) for the moment of inertia, we obtain

Θ_{0a} = (0.268)^{2} · 125.7+(0.358)^{2} · 117.25+(0.895)^{2} · 104.75

 

−2(0.268)(0.358) · 19.1+ 2(0.268)(0.895) · 44.8

 

−2(0.358)(0.895) · 4.800 (kg  cm^{2})

 

= 128.87 (kg  cm^{2}).

Related Answered Questions