Question 6.5: A [30/0/90]T graphite-epoxy laminate is subjected to the fol...

A [30/0/90]_{T} graphite-epoxy laminate is subjected to the following stress and moment resultants:
N_{xx} = 50  kN/m      N_{yy} = -10  kN/m    N_{xy} = 0   N/m
M_{xx} = 1  N – m/m      M_{yy} = -1  N – m/m    M_{xy} = 0  N – m/m
Determine the following quantities caused by these stress and moment resultants:
(a) Midplane strains and curvatures
(b) Ply strains relative to the x–y coordinate system
(c) Ply stresses relative to the x–y coordinate system.
Use material properties listed for graphite-epoxy in Table 3 of Chap. 3 and assume that each ply has a thickness of 0.125 mm.

Table 3 Nominal Material Properties for Common Unidirectional Composites
Property Glass/epoxy Kevlar/epoxy Graphite/epoxy
E_{11} 55 GPa (8.0 Msi) 100 GPa (15 Msi) 170 GPa (25 Msi)
E_{22} 16 GPa (2.3 Msi) 6 GPa (0.90 Msi) 10 GPa (1.5 Msi)
ν_{12} 0.28 0.33 0.30
G_{12} 7.6 GPa (1.1 Msi) 2.1 GPa (0.30 Msi) 13 GPa (1.9 Msi)
σ_{11}^{fT} 1050 MPa (150 ksi) 1380 MPa (200 ksi) 1500 MPa (218 ksi)
σ_{11}^{fC} 690 MPa (100 ksi) 280 MPa (40 ksi) 1200 MPa (175 ksi)
σ_{22}^{yT} 45 MPa (5.8 ksi) 35 MPa (2.9 ksi) 50 MPa (7.25 ksi)
σ_{22}^{yC} 120 MPa (16 ksi) 105 MPa (15 ksi) 100 MPa (14.5 ksi)
σ_{22}^{fT} 55 MPa (7.0 ksi) 45 MPa (4.3 ksi) 70 MPa (10 ksi)
σ_{22}^{fC} 140 MPa (20 ksi) 140 Msi (20 ksi) 130 MPa (18.8 ksi)
τ_{12}^{y} 40 MPa (4.4 ksi) 40 MPa (4.0 ksi) 75 MPa (10.9 ksi)
τ_{12}^{f} 70 MPa (10 ksi) 60 MPa (9 ksi) 130 MPa (22 ksi)
α_{11} 6.7  μ/m °C

(3.7 μin./in. °F)

-3.6 μm/m °C

(-2.0 μin./in. °F)

-0.9 μm/m °C

(-0.5 μin./in. °F)

α_{22} 25 μ/m °C

(14 μin./in. °F)

58 μm/m °C

(32 μin./in. °F)

27 μm/m °C

(15 μin./in. °F)

β_{11} 100 μm/m %M

(100 μin./in. %M)

175 μm/m %M

(175 μin./in. %M)

50 μm/m %M

(50 μin./in. %M)

β_{22} 1200 μm/m %M

(1200 μin./in. %M)

1700 μm/m %M

(1700 μin./in. %M)

1200 μm/m %M

(1200 μin./in. %M)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Note that this is the same laminate considered in Example Problem 4. A side view of the laminate appears in Fig. 17.

(a) Midplane strains and curvatures. The [abd] matrix for this laminate was calculated as a part of Example Problem 4. Hence, midplane strains and curvature may be obtained through application of Eq. (38), which becomes:

\left\{\begin{matrix} \varepsilon _{xx}^{o} \\ \varepsilon _{yy}^{o} \\ \gamma _{xy}^{o} \\ \kappa _{xx}\\\kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\} = \left[\begin{matrix} a_{11} & a_{12} & a_{16} & b_{11}& b_{12 } & b_{16} \\ a_{12} & a_{22} & a_{26} & b_{12}& b_{22} & b_{26} \\ a_{16} & a_{26} & a_{66} & b_{16} & b_{26} & b_{66} \\ b_{11}& b_{12 } & b_{16} & d_{11} & d_{12} & d_{16}\\ b_{12}& b_{22} & b_{26} & d_{12}& d_{22} & d_{26} \\b_{16} & b_{26} & b_{66} & d_{16} & d_{26} & d_{66} \end{matrix} \right] \left\{\begin{matrix} N_{xx} \\ N_{yy} \\ N_{xy} \\ M_{xx} \\M_{yy} \\M_{xy} \end{matrix} \right\}     (38)

 

\left\{\begin{matrix} \varepsilon _{xx}^{o} \\ \varepsilon _{yy}^{o} \\ \gamma _{xy}^{o} \\ \kappa _{xx}\\\kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\} = \left[\begin{matrix} 3.757 \times 10^{-8} & -1.964 \times 10^{-9} & -1.038 \times 10^{-8} \\ -1.964 \times 10^{-9} & 1.037 \times 10^{-7} & -4.234 \times 10^{-8} \\ -1.038 \times 10^{-8} & -4.234 \times 10^{-8} & 2.004\times 10^{-7}\\ 1.440 × 10^{-4}&-1.866 × 10^{-5}& 3.661 × 10^{-4}\\3.905  × 10^{-6}& -6.361 × 10^{-4} & 3.251× 10^{-4}\\ 8.513 × 10^{-5} & 4.268 × 10^{4} & -1.851 × 10^{-5}\end{matrix} \begin{matrix} 1.440 × 10^{-4}&3.905 × 10^{-6}& 8.513 × 10^{-5}\\-1.866  × 10^{-5}& -6.361 × 10^{-4} & 4.268 × 10^{4}\\ 3.661 × 10^{-4} & 3.251 × 10^{-4} & -1.851 × 10^{-5}\\7.064 & -3.122  × 10^{-2} & -4.572\\ -3.122 × 10^{-2} & 6.429 & -3.620\\-4.572 & -3.620 & 17.41\end{matrix} \right]  \times \left\{\begin{matrix} 50 \times 10^{3} \\ -10 \times 10^{-3} \\ 0 \\ 1 \\-1 \\0 \end{matrix} \right\}

Completing this matrix multiplication, we obtain:

\left\{\begin{matrix} \varepsilon _{xx}^{o} \\ \varepsilon _{yy}^{o} \\ \gamma _{xy}^{o} \\ \kappa _{xx}\\\kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\} = \left\{\begin{matrix} 2039  μm/m \\ -518  μm/m \\ – 55  μrad\\ 14.48  m^{-1}\\0.096  m^{-1} \\- 1.323  m^{-1} \end{matrix} \right\}

(b) Ply strains relative to the x–y coordinate system. Ply strains may now be calculated using Eq. (12). For example, strains present at the outer surface of ply 1 (i.e., strains present at z_{0} = -0.0001875 m) are:

\left\{\begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} = \left\{\begin{matrix} \varepsilon° _{xx} \\ \varepsilon° _{yy} \\ \gamma° _{xy} \end{matrix} \right\} + z \left\{\begin{matrix} \kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\}       (12)

 

\left. \left\{\begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} \right|_{z = z_{0}}= \left\{\begin{matrix} \varepsilon° _{xx} \\ \varepsilon° _{yy} \\ \gamma° _{xy} \end{matrix} \right\} + z_{0} \left\{\begin{matrix} \kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right\}= \left\{\begin{matrix} 2038 \times 10^{-6} m/m \\ -518 \times 10^{-6} m/m \\ -55 \times 10^{-6} m/m \end{matrix} \right\} + ( – 0.0001875 m) \left\{\begin{matrix} 14.48 rad/m \\ 0.096 rad/m \\ – 1.328 rad/m \end{matrix} \right\} 

 

\left. \left\{\begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} \right|_{z = z_{0}}= \left\{\begin{matrix} -677 μm/m \\ -536  μm/m \\ 194  μrad\end{matrix} \right\} 

Strains calculated at the remaining ply interface positions are summarized in Table 5.
(c) Ply stresses relative to the x–y coordinate system. The [\overline{Q}] matrix for all plies was calculated as a part of Example Problem 4.  Ply stresses may now  be calculated using Eq. (30) of Chap. 5, with ΔT = ΔM = 0. The stresses present at the outer surface of ply 1 (i.e., at z=z_{0}) are:

M_{xx}= \int_{-t/2}^{t/2}{\left\{z \overline{Q}_{11} \varepsilon _{xx}^{o}+ z \overline{Q}_{12} \varepsilon _{yy}^{o} + z \overline{Q}_{16} \gamma _{xx}^{o} + z^{2} \overline{Q}_{11} \kappa _{xx} + z^{2} \overline{Q}_{12} \kappa _{yy} + z^{2} \overline{Q}_{16} \kappa _{xy}\right\} }dz        (30)

Table 5 Ply Interface Strains in a [30/0/90] Graphite-Epoxy Laminate Caused by the Stress and Moment Resultants Specified in Example Problem 5
z-coordinate (mm) \varepsilon _{xx}  (\mu m/m) \varepsilon _{yy}  (\mu m/m) \gamma  _{xy}  (\mu rad)
-0.1875 -677 -536 194
-0.0625 1133 -524 28
0.0625 2943 -512 -137
0.1875 4753 -500 -303
Strains are referenced to the x–y coordinate system.
\left. \left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} \right|_{z = z_{0}}^{ply 1} = \left. \left[\begin{matrix} \bar{Q} _{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{matrix} \right] \right|_{z = z_{0}}^{ply 1}\left. \left\{ \begin{matrix} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right\} \right|_{z =z_{0}}

 

\left. \left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} \right|_{z = z_{0}}^{ply 1} =  \left[\begin{matrix} 107.6 \times 10^{9} & 26.06 \times 10^{9} & 48.13 \times 10^{9} \\ 26.06 \times 10^{9} & 27.22\times 10^{9} & 21.52 \times 10^{9} \\ 48.13 \times 10^{9} & 21.52 \times 10^{9}  & 36.05 \times 10^{9} \end{matrix} \right]  \left\{\begin{matrix} -677  × 10^{-6} \\ -536  × 10^{-6} \\ 194  × 10^{-6}\end{matrix} \right\} 

 

\left. \left\{\begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right\} \right|_{z = z_{0}}^{ply 1} = \left\{\begin{matrix} -77.5  MPa \\ -28.1   MPa \\ -37.1  MPa  \end{matrix} \right\} 

Stresses calculated at remaining ply interface positions are summarized in Table 6.

Table 6 Ply Interface Stresses in a [30/0/90]T Graphite-Epoxy Laminate Caused by the Stress and Moment Resultants Specified in Example Problem 5
Ply number z-coordinate (mm) \sigma _{xx}  (Mpa) \sigma _{yy}  (Mpa) \tau _{xy}  (Mpa)
Ply 1 -0.1875 -77.5 -28.1 -37.1
-0.0625 109.7 15.9 44.3
Ply 2 -0.0625 192.1 -1.85 0.366
0.0625 501.5 3.73 -1.78
Ply 3 0.0625 28.0 -78.6 -1.78
0.1875 46.3 -71.1 -3.93
Stresses are referenced to the x–y coordinate system.
F 17

Related Answered Questions