Question 13.4: Find the torque that is needed to rotate a rectangular plate...

Find the torque that is needed to rotate a rectangular plate (edges a and b) with constant angular velocity ω about a diagonal.

13.12
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The principal moments of inertia of the rectangle are already known from Example 11.7:

I_{1} = \frac{1}{12} Ma^{2},                  I_{2} = \frac{1}{12} Mb^{2},                      I_{3} = \frac{1}{12} M(a^{2} +b^{2}).                                     (13.6)

The angular velocity is

ω = (ω · e_{x} )e_{x} + (ω · e_{y} )e_{y} ,

i.e.,

ω = − \frac{ωb}{\sqrt{a^{2} +b^{2}}} e_{x} + \frac{ωa}{\sqrt{a^{2} + b^{2}}}e_{y}

 

⇒ ω_{1} =\frac{−ωb}{\sqrt{a^{2} + b^{2}}},                   ω_{2} =\frac{+ωa}{\sqrt{a^{2} +b^{2}}},                       ω_{3} = 0.                                             (13.7)

Inserting (13.6) and (13.7) into the Euler equations yields

I_{1} \dot{ω}_{1} + (I_{3} − I_{2})ω_{2}ω_{3} = D_{1},

 

I_{2}  \dot{ω}_{2} + (I_{1} − I_{3})ω_{3}ω_{1} = D_{2},

 

I_{3}  \dot{ω}_{3} + (I_{2} − I_{1})ω_{2}ω_{1} = D_{3},

and furthermore, D_{1} = 0,D_{2} = 0, and

D_{3} =\frac{−M(b^{2} −a^{2})abω^{2}}{12(a^{2} + b^{2})}.

Hence, the torque is

D =\frac{−M(b^{2} − a^{2})abω^{2}}{12(a^{2} +b^{2})}e_{z}.

For a = b (square), D = 0!

Related Answered Questions