Question 11.5: A steel wide-flange column of a W 14 × 82 shape (Fig. 11-29a...

A steel wide-flange column of a W 14 × 82 shape (Fig. 11-29a) is pin- supported at the ends and has a length of 25 ft. The column supports a centrally applied load P_{1} = 320  kips and an eccentrically applied load P_{2} = 40  kips (Fig. 11-29b). Bending takes place about axis 1–1 of the cross section, and the eccentric load acts on axis 2–2 at a distance of 13.5 in. from the centroid C.

(a) Using the secant formula, and assuming E = 30,000 ksi, calculate the maximum compressive stress in the column.

(b) If the yield stress for the steel is \sigma_{Y} = 42  ksi, what is the factor of safety with respect to yielding?

11.5-
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach.

Part (a): Maximum compressive stress.

1. Conceptualize: The two loads P_{1}  and  P_{2} acting as shown in Fig. 11-29b are statically equivalent to a single load P = 360 kips acting with an eccentricity e = 1.5 in. (Fig. 11-29c). Since the column is now loaded by a single force P having an eccentricity e, use the secant formula to find the maximum stress.

The required properties of the W 14 × 82 wide-flange shape are obtained from Table F-1(a) in Appendix F:

A=24.0  in ^{2}   \quad r=6.05  in.   \quad c=\frac{14.3  in.}{2}=7.15  in.

2. Categorize: The required terms in the secant formula of Eq. (11-67) are calculated as

\sigma_{\max }=\frac{P}{A}\left[1+\frac{e c}{r^{2}} \sec \left(\frac{L}{2 r} \sqrt{\frac{P}{E A}}\right)\right]           (11-67)

\frac{P}{A}=\frac{360  kips }{24  in ^{2}}=15  ksi

 

\frac{e c}{r^{2}}=\frac{(1.5  in.)(7.15  in.)}{(6.05  in.)^{2}}=0.293

 

\frac{L}{r}=\frac{(25  ft )(12  in. / ft )}{6.05  in.}=49.59

 

\frac{P}{E A}=\frac{360  kips }{(30,000  ksi )\left(24  in ^{2}\right)}=500 \times 10^{-6}

3. Analyze: Substitute these values into the secant formula to get

\sigma_{\max }=\frac{P}{A}\left[1+\frac{e c}{r^{2}} \sec \left(\frac{L}{2 r} \sqrt{\frac{P}{E A}}\right)\right]

= (15 ksi)(1 + 0.345) = 20.1 ksi

4. Finalize: This compressive stress occurs at mid-height of the column on the concave side (the right-hand side in Fig. 11-29b).

Part (b): Factor of safety with respect to yielding.

1. Conceptualize: To find the factor of safety, determine the value of the load P, acting at the eccentricity e, that will produce a maximum stress equal to the yield stress \sigma_{Y} = 42  ksi. Since this value of the load is just sufficient to produce initial yielding of the material, denote it as P_{Y}.

2. Categorize: Note that force P_{Y} cannot be determined by multiplying the load P (equal to 360 kips) by the ratio \sigma_{Y} /\sigma_{max}. The reason is that there is a nonlinear relationship between load and stress. Instead, substitute \sigma_{\max }=\sigma_{Y}=42  ksi in the secant formula and then solve for the corresponding load P, which becomes P_{Y}. In other words, find the value of P_{Y} that satisfies

\sigma_{ Y }=\frac{P_{ Y }}{A}\left[1+\frac{e c}{r^{2}} \sec \left(\frac{L}{2 r} \sqrt{\frac{P_{ Y }}{E A}}\right)\right]              (11-70)

3. Analyze: Substitute numerical values to obtain

42  ksi =\frac{P_{ Y }}{24.0  in ^{2}}\left[1+0.293  sec \left(\frac{49.59}{2} \sqrt{\frac{P_{ Y }}{(30,000  ksi )\left(24.0  in ^{2}\right)}}\right)\right]

or

1008  kips =P_{ Y }\left[1+0.293 \sec \left(0.02916 \sqrt{P_{ Y }}\right)\right]

in which P_{Y} has units of kips. Solving this equation numerically gives

P_{Y}=714  kips

This load will produce yielding of the material (in compression) at the cross section of maximum bending moment.

Since the actual load is P = 360 kips, the factor of safety against yielding is

n=\frac{P_{ Y }}{P}=\frac{714  kips }{360  kips }=1.98

4. Finalize: This example illustrates two of the many ways in which the secant formula may be used. Other types of analysis are illustrated in the problems at the end of the chapter.

Table F-1(a)
Properties of Wide-Flange Sections (W Shapes)—USCS Units (Abridged List)
Designation Weight
per
Foot
Area Depth Web
Thickness
Flange Axis 1–1 Axis 2-2
Width Thickness I S r I S r
lb in² in. in. in. in. \text{in}^{4} in³ in. \text{in}^{4} in³ in.
W 30 × 211 211 62.2 30.9 0.775 15.1 1.32 10300 665 12.9 757 100 3.49
W 30 × 132 132 38.9 30.3 0.615 10.5 1.00 5770 380 12.2 196 37.2 2.25
W 24 × 162 162 47.7 25.0 0.705 13.0 1.22 5170 414 10.4 443 68.4 3.05
W 24 × 94 94.0 27.7 24.3 0.515 9.07 0.875 2700 222 9.87 109 24.0 1.98
W 18 × 119 119 35.1 19.0 0.655 11.3 1.06 2190 231 7.90 253 44.9 2.69
W 18 × 71 71.0 20.8 18.5 0.495 7.64 0.810 1170 127 7.50 60.3 15.8 1.70
W 16 × 100 100 29.5 17.0 0.585 10.4 0.985 1490 175 7.10 186 35.7 2.51
W 16 × 77 77.0 22.6 16.5 0.455 10.3 0.760 1110 134 7.00 138 26.9 2.47
W 16 × 57 57.0 16.8 16.4 0.430 7.12 0.715 758 92.2 6.72 43.1 12.1 1.60
W 16 × 31 31.0 9.13 15.9 0.275 5.53 0.440 375 47.2 6.41 12.4 4.49 1.17
W 14 × 120 120 35.3 14.5 0.590 14.7 0.940 1380 190 6.24 495 67.5 3.74
W 14 × 82 82.0 24.0 14.3 0.510 10.1 0.855 881 123 6.05 148 29.3 2.48
W 14 × 53 53.0 15.6 13.9 0.370 8.06 0.660 541 77.8 5.89 57.7 14.3 1.92
W 14 × 26 26.0 7.69 13.9 0.255 5.03 0.420 245 35.3 5.65 8.91 3.55 1.08
W  12 × 87 87.0 25.6 12.5 0.515 12.1 0.810 740 118 5.38 241 39.7 3.07
W 12 × 50 50.0 14.6 12.2 0.370 8.08 0.640 391 64.2 5.18 56.3 13.9 1.96
W 12 × 35 35.0 10.3 12.5 0.300 6.56 0.520 285 45.6 5.25 24.5 7.47 1.54
W 12 × 14 14.0 4.16 11.9 0.200 3.97 0.225 88.6 14.9 4.62 2.36 1.19 0.753
W 10 × 60 60.0 17.6 10.2 0.420 10.1 0.680 341 66.7 4.39 116 23.0 2.57
W 10 × 45 45.0 13.3 10.1 0.350 8.02 0.620 248 49.1 4.32 53.4 13.3 2.01
W 10 × 30 30.0 8.84 10.5 0.300 5.81 0.510 170 32.4 4.38 16.7 5.75 1.37
W 10× 12 12.0 3.54 9.87 0.190 3.96 0.210 53.8 10.9 3.90 2.18 1.10 0.785
W 8 × 35 35.0 10.3 8.12 0.310 8.02 0.495 127 31.2 3.51 42.6 10.6 2.03
W 8 × 28 28.0 8.24 8.06 0.285 6.54 0.465 98.0 24.3 3.45 21.7 6.63 1.62
W 8 × 21 21.0 6.16 8.28 0.250 5.27 0.400 75.3 18.2 3.49 9.77 3.71 1.26
W 8 × 15 15.0 4.44 8.11 0.245 4.01 0.315 48.0 11.8 3.29 3.41 1.70 0.876

 

11-9c

Related Answered Questions