Question D.5: Determine the moment of inertia Ic with respect to the horiz...

Determine the moment of inertia I_{c} with respect to the horizontal axis C–C through the centroid C of the beam cross section shown in Fig. D-16. (The position of the centroid C was determined previously in Example D-2 of Section D.2.)

Note: From beam theory (Chapter 5), axis C–C is the neutral axis for bending of this beam; therefore, the moment of inertia I_{c} must be determined in order to calculate the stresses and deflections of this beam.

D.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Find the moment of inertia I_{c} with respect to axis C–C by applying the parallel-axis theorem to each individual part of the composite area. The area divides naturally into three parts: (1) the cover plate, (2) the wide-flange section, and (3) the channel section. The following areas and centroidal distances were obtained previously in Example D-2:

A_{1}=3.0  in ^{2}   \quad A_{2}=20.8  in ^{2}   \quad A_{3}=8.82  in ^{2}

 

\bar{y}_{1}=9.485 \text { in. }  \quad \bar{y}_{2}=0  \quad \bar{y}_{3}=9.884 \text { in. }  \quad \bar{c}=1.80  in.

The moments of inertia of the three parts with respect to horizontal axes through their own centroids C_{1} , C_{2}, and C_{3} are

I_{1}=\frac{b h^{3}}{12}=\frac{1}{12}(6.0  in.)(0.5  in.)^{3}=0.063  in ^{4}

 

I_{2}=1170  in ^{4}  \quad I_{3}=3.94  in ^{4}

The moments of inertia I_{2}  and  I_{3} are obtained from Tables F-1(a) and F-3(a), respectively, of Appendix F.

Now use the parallel-axis theorem to calculate the moments of inertia about axis C–C for each of the three parts of the composite area:

\left(I_{c}\right)_{1}=I_{1}+A_{1}\left(\bar{y}_{1}+\bar{c}\right)^{2}=0.063  in ^{4}+\left(3.0  in ^{2}\right)(11.28  in.)^{2}=382  in ^{4}

 

\left(I_{c}\right)_{2}=I_{2}+A_{2} \bar{c}^{2}=1170  in ^{4}+\left(20.8  in ^{2}\right)(1.80 \text { in. })^{2}=1240  in ^{4}

 

\left(I_{c}\right)_{3}=I_{3}+A_{3}\left(\bar{y}_{3}-\bar{c}\right)^{2}=3.94  in ^{4}+\left(8.82  in ^{2}\right)(8.084  in.)^{2}=580  in ^{4}

The sum of these individual moments of inertia gives the moment of inertia of the entire cross-sectional area about its centroidal axis C–C:

I_{c}=\left(I_{c}\right)_{1}+\left(I_{c}\right)_{2}+\left(I_{c}\right)_{3}=2200  in ^{4}

This example shows how to calculate moments of inertia of composite areas by using the parallel-axis theorem.

Table F-1(a)
Properties of Wide-Flange Sections (W Shapes)—USCS Units (Abridged List)
Designation Weight
per
Foot
Area Depth Web
Thickness
Flange Axis 1–1 Axis 2-2
Width Thickness I S r I S r
lb in² in. in. in. in. \text{in}^{4} in³ in. \text{in}^{4} in³ in.
W 30 × 211 211 62.2 30.9 0.775 15.1 1.32 10300 665 12.9 757 100 3.49
W 30 × 132 132 38.9 30.3 0.615 10.5 1.00 5770 380 12.2 196 37.2 2.25
W 24 × 162 162 47.7 25.0 0.705 13.0 1.22 5170 414 10.4 443 68.4 3.05
W 24 × 94 94.0 27.7 24.3 0.515 9.07 0.875 2700 222 9.87 109 24.0 1.98
W 18 × 119 119 35.1 19.0 0.655 11.3 1.06 2190 231 7.90 253 44.9 2.69
W 18 × 71 71.0 20.8 18.5 0.495 7.64 0.810 1170 127 7.50 60.3 15.8 1.70
W 16 × 100 100 29.5 17.0 0.585 10.4 0.985 1490 175 7.10 186 35.7 2.51
W 16 × 77 77.0 22.6 16.5 0.455 10.3 0.760 1110 134 7.00 138 26.9 2.47
W 16 × 57 57.0 16.8 16.4 0.430 7.12 0.715 758 92.2 6.72 43.1 12.1 1.60
W 16 × 31 31.0 9.13 15.9 0.275 5.53 0.440 375 47.2 6.41 12.4 4.49 1.17
W 14 × 120 120 35.3 14.5 0.590 14.7 0.940 1380 190 6.24 495 67.5 3.74
W 14 × 82 82.0 24.0 14.3 0.510 10.1 0.855 881 123 6.05 148 29.3 2.48
W 14 × 53 53.0 15.6 13.9 0.370 8.06 0.660 541 77.8 5.89 57.7 14.3 1.92
W 14 × 26 26.0 7.69 13.9 0.255 5.03 0.420 245 35.3 5.65 8.91 3.55 1.08
W  12 × 87 87.0 25.6 12.5 0.515 12.1 0.810 740 118 5.38 241 39.7 3.07
W 12 × 50 50.0 14.6 12.2 0.370 8.08 0.640 391 64.2 5.18 56.3 13.9 1.96
W 12 × 35 35.0 10.3 12.5 0.300 6.56 0.520 285 45.6 5.25 24.5 7.47 1.54
W 12 × 14 14.0 4.16 11.9 0.200 3.97 0.225 88.6 14.9 4.62 2.36 1.19 0.753
W 10 × 60 60.0 17.6 10.2 0.420 10.1 0.680 341 66.7 4.39 116 23.0 2.57
W 10 × 45 45.0 13.3 10.1 0.350 8.02 0.620 248 49.1 4.32 53.4 13.3 2.01
W 10 × 30 30.0 8.84 10.5 0.300 5.81 0.510 170 32.4 4.38 16.7 5.75 1.37
W 10× 12 12.0 3.54 9.87 0.190 3.96 0.210 53.8 10.9 3.90 2.18 1.10 0.785
W 8 × 35 35.0 10.3 8.12 0.310 8.02 0.495 127 31.2 3.51 42.6 10.6 2.03
W 8 × 28 28.0 8.24 8.06 0.285 6.54 0.465 98.0 24.3 3.45 21.7 6.63 1.62
W 8 × 21 21.0 6.16 8.28 0.250 5.27 0.400 75.3 18.2 3.49 9.77 3.71 1.26
W 8 × 15 15.0 4.44 8.11 0.245 4.01 0.315 48.0 11.8 3.29 3.41 1.70 0.876

Table F-3(a)
Properties of Channel Sections (C Shapes)—USCS Units (Abridged List)
Designation Weight
per Foot
Area Depth Web
Thickness
Flange Axis 1–1 Axis 2–2
Width Average
Thickness
I S r I S r c
lb in² in. in. in. in. in^{4} in³ in. in^{4} in³ in. in.
C 15 × 50 50.0 14.7 15.0 0.716 3.72 0.650 404 53.8 5.24 11.0 3.77 0.865 0.799
C 15 × 40 40.0 11.8 15.0 0.520 3.52 0.650 348 46.5 5.45 9.17 3.34 0.883 0.778
C 15 × 33.9 33.9 10.0 15.0 0.400 3.40 0.650 315 42.0 5.62 8.07 3.09 0.901 0.788
C 12 × 30 30.0 8.81 12.0 0.510 3.17 0.501 162 27.0 4.29 5.12 2.05 0.762 0.674
C 12 × 25 25.0 7.34 12.0 0.387 3.05 0.501 144 24.0 4.43 4.45 1.87 0.779 0.674
C 12 × 20.7 20.7 6.08 12.0 0.282 2.94 0.501 129 21.5 4.61 3.86 1.72 0.797 0.698
C 10 × 30 30.0 8.81 10.0 0.673 3.03 0.436 103 20.7 3.42 3.93 1.65 0.668 0.649
C 10 × 25 25.0 7.34 10.0 0.526 2.89 0.436 91.1 18.2 3.52 3.34 1.47 0.675 0.617
C 10 × 20 20.0 5.87 10.0 0.379 2.74 0.436 78.9 15.8 3.66 2.80 1.31 0.690 0.606
C 10 × 15.3 15.3 4.48 10.0 0.240 2.60 0.436 67.3 13.5 3.87 2.27 1.15 0.711 0.634
C 8 × 18.7 18.7 5.51 8.00 0.487 2.53 0.390 43.9 11.0 2.82 1.97 1.01 0.598 0.565
C 8 × 13.7 13.7 4.04 8.00 0.303 2.34 0.390 36.1 9.02 2.99 1.52 0.848 0.613 0.554
C 8 × 11.5 11.5 3.37 8.00 0.220 2.26 0.390 32.5 8.14 3.11 1.31 0.775 0.623 0.572
C 6 × 13 13.0 3.81 6.00 0.437 2.16 0.343 17.3 5.78 2.13 1.05 0.638 0.524 0.514
C 6 × 10.5 10.5 3.08 6.00 0.314 2.03 0.343 15.1 5.04 2.22 0.860 0.561 0.529 0.500
C 6 × 8.2 8.20 2.39 6.00 0.200 1.92 0.343 13.1 4.35 2.34 0.687 0.488 0.536 0.512
C 4 × 7.2 7.20 2.13 4.00 0.321 1.72 0.296 4.58 2.29 1.47 0.425 0.337 0.447 0.459
C 4 × 5.4 5.40 1.58 4.00 0.184 1.58 0.296 3.85 1.92 1.56 0.312 0.277 0.444 0.457
Notes: 1. Axes 1–1 and 2–2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2–2, the tabulated value of S is the smaller of the two section moduli for this axis.

Related Answered Questions