Question 6.3.10: Finding Exact Circular Function Values in Three Ways Find si...

Finding Exact Circular Function Values in Three Ways

Find \sin \frac{5 \pi}{6}, \cos \frac{5 \pi}{6}, \text { and } \tan \frac{5 \pi}{6} by

a. using Figure 47 to find the endpoint of the arc intercepted by t=\frac{5 \pi}{6}.

b. using reference angles and Table 2 from Section 3.

c. converting \frac{5 \pi}{6} to degrees.

TABLE 2 Trigonometric Function Values of Quadrantal Angles

\begin{array}{lccccccc}\hline \theta \text { (degrees) } & \theta \text { (radians) } & \sin \theta & \cos \theta & \tan \theta & \cot \theta & \sec \theta & \csc \theta \\\hline 0^{\circ} & 0 & 0 & 1 & 0 & \text { undefined } & 1 & \text { undefined } \\90^{\circ} & \frac{\pi}{2} & 1 & 0 & \text { undefined } & 0 & \text { undefined } & 1 \\180^{\circ} & \pi & 0 & -1 & 0 & \text { undefined } & -1 & \text { undefined } \\270^{\circ} & \frac{3 \pi}{2} & -1 & 0 & \text { undefined } & 0 & \text { undefined } & -1 \\360^{\circ} & 2 \pi & 0 & 1 & 0 & \text { undefined } & 1 & \text { undefined } \\\hline\end{array}

Screenshot 2022-03-24 121740-min
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. From Figure 47, we see that the endpoint of the arc of length t=\frac{5 \pi}{6} \text { is }\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right).

So \cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2}, \sin \frac{5 \pi}{6}=\frac{1}{2}, \text { and } \tan \frac{5 \pi}{6}=\frac{\sin \frac{5 \pi}{6}}{\cos \frac{5 \pi}{6}}=\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3} \text {. }

b. Either by comparing \frac{5 \pi}{6} \text { to } \frac{6 \pi}{6} or by referring to Figure 47, we see that t=\theta=\frac{5 \pi}{6} radians is in Q II. So its cosine is negative and its sine is positive.The reference angle is

\pi-\frac{5 \pi}{6}=\frac{6 \pi}{6}-\frac{5 \pi}{6}=\frac{\pi}{6}

Then \cos \frac{5 \pi}{6}=-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2}, \sin \frac{5 \pi}{6}=\sin \frac{\pi}{6}=\frac{1}{2}, and

\tan \frac{5 \pi}{6}=\frac{\sin \frac{5 \pi}{6}}{\cos \frac{5 \pi}{6}}=\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3} .

c. Converting \frac{5 \pi}{6} to degrees, we have  \frac{5 \pi}{6} \cdot \frac{180}{\pi}=150^{\circ} . Notice that Figure 47 also gives this information. Because 150° is in Q II, its reference angle is 180^{\circ}-150^{\circ}=30^{\circ} .

Then \cos \frac{5 \pi}{6}=\cos 150^{\circ}=-\cos 30^{\circ}=-\frac{\sqrt{3}}{2},

\sin \frac{5 \pi}{6}=\sin 150^{\circ}=\sin 30^{\circ}=\frac{1}{2}, and

\tan \frac{5 \pi}{6}=\tan 150^{\circ}=\frac{\sin 150^{\circ}}{\cos 150^{\circ}}=\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}.

Related Answered Questions

Question: 6.4.8

Verified Answer:

Use the steps in Example 7 for the procedure for g...
Question: 6.4.6

Verified Answer:

Recall that for any function f, the graph of y = f...
Question: 6.4.3

Verified Answer:

Begin with the graph of y=2 cos x. Multiply the y-...
Question: 6.6.8

Verified Answer:

a. Let θ represent the radian measure of the angle...