Question 8.5.2: Calculation of the Standard Heat of Reaction as a Function o...

Calculation of the Standard Heat of Reaction as a Function of Temperature

Compute the standard-state heat of reaction for the gas-phase reaction N _{2} O _{4}=2 NO _{2} over the temperature range of 200 to 600 K. ^{13}

Data: See Appendices A.II and A.IV.

^{13}Since, as we will see, \bar{H}_{ i }=\underline{H}_{ i } for an ideal gas mixture, the standard state heat of reaction and the actual heat of reaction are identical in this case.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The heat of reaction at a temperature T can be computed from

 

\Delta_{ rxn } H^{\circ}(T)=\sum_{ i } \nu_{ i } \Delta_{ f } \underline{H}_{ i }^{\circ}(T)

 

At T=25^{\circ} C we find, from the data in Appendix A.IV, that for each mole of N _{2} O _{4} reacted,

 

\Delta_{ rxn } H^{\circ}\left(T=25^{\circ} C \right)=[2 \times 33.18-9.16] kJ / mol =57.20 kJ / mol

 

To compute the heat of reaction at any temperature T, we start from Eq. 8.5-5 and note that since the standard state for each species is a low-pressure gas, C_{ P , i }^{\circ}=C_{ P , i }^{*}. Therefore,

 

\begin{aligned}\Delta_{ rxn } H^{\circ}(T, 1 bar ) &=\sum_{ i } \nu_{ i } \Delta_{ f } H_{ i }^{\circ}\left(25^{\circ} C , 1 bar \right)+\sum_{ i } \nu_{ i } \int_{T=25^{\circ} C }^{T} C_{ P , i }^{\circ} d T \\&=\Delta_{ rxn } H^{\circ}\left(25^{\circ} C , 1 bar \right)+\sum_{ i } \nu_{ i } \int_{T=25^{\circ} C }^{T} C_{ P , i }^{\circ} d T\end{aligned} (8.5-5)

 

\Delta_{ rxn } H^{\circ}(T)=\Delta_{ rxn } H^{\circ}\left(T=25^{\circ} C \right)+\int_{T=298.2 K }^{T} \sum_{ i } \nu_{ i } C_{ P , i }^{*} d T

 

For the case here we have, from Appendix A.II,

 

\begin{aligned}\sum \nu_{ i } C_{ P , i }^{*} &=2 C_{ P , NO _{2}}^{*}-C_{ P , N _{2} O _{4}}^{*} \\&=12.804-7.239 \times 10^{-2} T+4.301 \times 10^{-5} T^{2}+1.5732 \times 10^{-8} T^{3} \frac{ J }{ mol K }\end{aligned}

 

Thus

 

\begin{aligned}\Delta_{ rxn } \underline{H}^{\circ}(T)=& 57200+\int_{298.2}^{T}\left(12.804-7.239 \times 10^{-2} T\right.\\&\left.+4.301 \times 10^{-5} T^{2}+1.5732 \times 10^{-8} T^{3}\right) d T \\=& 57200+12.804(T-298.15)-\frac{7.239}{2} \times 10^{-2}\left(T^{2}-298.15^{2}\right) \\&+\frac{4.301}{3} \times 10^{-5}\left(T^{3}-298.15^{3}\right)+\frac{1.5732}{4} \times 10^{-8}\left(T^{4}-298.15^{4}\right) \\=& 56189+12.804 T-3.619 \times 10^{-2} T^{2}+1.4337 \times 10^{-5} T^{3} \\&+3.933 \times 10^{-9} T^{4} J / mol N _{2} O _{4}\end{aligned}

 

Values of \Delta_{\operatorname{rxn}} \underline{H}^{\circ} for various values of T are given in the following table.

 

T (K) 200 300 400 500 600
\Delta_{\operatorname{rxn}} \underline{H}^{\circ} \left( kJ / mol N _{2} O _{4}\right) 57.423 57.192 56.538 55.580 54.448

 

[Aspen Plus^R  can be used to compute the standard heat of reaction using the folder Aspen Illustrations>Chapter 8>8.5-2 on Wiley website for this book following the procedure used in Illustration 8.5-1. One difference is that calculation is repeated for each of the temperatures with an isothermal reactor (reactor feed and exit at the same temperatures). The results are

 

T (K) Watts \left( kJ / mol N _{2} O _{4}\right)
200 15134.7 54.48
300 15920.5 57.31
400 16169.9 58.21
500 16087.3 57.91
600 15828.9 56.98

 

These results are in only approximate agreement with those in the illustration above. The differences are the result of differences in the databases in the appendices and in Aspen Plus^R].

Comment

The heat of reaction can be, and in fact usually is, a much stronger function of temperature than is the case here.

Related Answered Questions