Question 15.7: Determine the Lagrangian and the equation of motion of the f...

Determine the Lagrangian and the equation of motion of the following system: Let m be a point mass on a massless bar of length l which in turn is fixed to a hinge. The hinge oscillates in the vertical direction according to h(t) = h_{0}  cos  ωt.
The only degree of freedom is the angle ϑ between the bar and the vertical (upright pendulum).

15.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The position of the point mass m is (x, y):

x = l  sin  ϑ,                y = h(t) +l  cos ϑ = h_{0}  cos  ωt +l  cos  ϑ.

Differentiation of this equation yields

\dot{x}= \dot{ϑ} l  cos  ϑ,                  \dot{y} =−(ωh_{0}  sin  ωt + \dot{ϑ} l  sin  ϑ).

Hence, the kinetic energy T becomes

T = \frac{1}{2} m(\dot{x}^{2} + \dot{y}^{2})

 

= \frac{1}{2} m(\dot{ϑ}^{2}l^{2} + ω^{2}h^{2}_{0}  sin^{2}  ωt +2ωh_{0} \dot{ϑ}l  sin  ϑ  sin  ωt),

and the potential energy reads

V = mgy = mg(h_{0}  cos  ωt +l  cos  ϑ).

Then the Lagrangian becomes

L = T −V

 

= \frac{m}{2} \left[ \dot{ϑ}^{2}l^{2} +ω^{2}h^{2}_{0}  sin^{2}  ωt +2ωh_{0}\dot{ϑ}  sin  ϑ   sin  ωt −2g(h_{0}  cos  ωt +l  cos  ϑ)\right]

The Lagrange equation reads

\frac{d}{dt} \left(\frac{∂L}{∂ \dot{ϑ}}\right) − \frac{∂L}{∂ϑ}= 0,

 

\frac{∂L}{∂ \dot{ϑ}}= ml^{2}\dot{ϑ} + mωh_{0}l  sin  ϑ  sin  ωt,

 

\frac{∂L}{∂ϑ}= mωh_{0} \dot{ϑ}l  cos ϑ  sin  ωt + mgl  sin  ϑ,

 

\frac{d}{dt}  \frac{∂L}{∂ \dot{ϑ}} = ml^{2} \ddot{ϑ} + mωh_{0}l\dot{ϑ}  cos ϑ  sin  ωt + mω^{2}h_{0}l  sin ϑ  cos  ωt,

 

l^{2}\ddot{ϑ} +ωh_{0}l\dot{ϑ}  cos ϑ  sin  ωt +ω^{2}h_{0}l  sin ϑ  cos  ωt −ωh_{0}l\dot{ϑ}  cos ϑ  sin  ωt −gl  sin ϑ = 0,

or

l\ddot{ϑ} +ω^{2}h_{0}  sin ϑ  cos  ωt −g  sin ϑ = 0.

 

The substitution ϑ^{′} = ϑ − π ⇒ sin ϑ =−sin ϑ^{′} ; for small displacements, −sin ϑ^{′} ≈ −ϑ^{′}, i.e.,

l\ddot{ϑ}^{′} +(g −ω^{2}h_{0}  cos  ωt)ϑ^{′} = 0.

This is the desired equation of motion. If the piston is at rest, i.e., h(t) = h_{0} = 0, we get

\ddot{ϑ}^{′} + \frac{g}{l} ϑ^{′} = 0.

This is the equation of motion of the ordinary pendulum!

 

Related Answered Questions

Question: 15.10

Verified Answer:

Conservation of the center of gravity here reads [...
Question: 15.11

Verified Answer:

Conservation of the center of gravity and of angul...