Question 15.8: Find the position of stable equilibrium of the pendulum of E...

Find the position of stable equilibrium of the pendulum of Exercise 15.7 if the hinge oscillates with the frequency ω ≫\sqrt{g/l}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first rewrite the Lagrangian of the pendulum of Exercise 15.7 as follows: The terms

\frac{mω^{2}}{2} h^{2}_{0}  sin^{2}  ωt        and          −mgh_{0}  cos  ωt

can be written as total differentials with respect to time:

\frac{mω^{2}}{2} h^{2}_{0} sin^{2}  ωt = \frac{d}{dt} \left(−\frac{1}{4} mωh^{2}_{0} sin  ωt  cos  ωt\right) + C,

 

−mgh_{0}  cos  ωt = \frac{d}{dt} \left(−\frac{mgh_{0}}{ω} sin  ωt\right).

We can omit these terms, since Lagrangians that differ only by a total derivative with respect to time, according to the Hamilton principle δ  \int_{t_{1}}^{t_{2}}{Ldt} = 0, are equivalent.
Hence,

L =\frac{m}{2} \left[ \dot{ϑ}^{2}l^{2} +ω^{2}h^{2}_{0}  sin^{2}  ωt +2ωh_{0}  \dot{ϑ}l  sin ϑ   sin  ωt −2g(h_{0}  cos  ωt + l  cos ϑ)\right]

 

= \frac{m}{2} [\dot{ϑ}^{2}l^{2} + 2ωh_{0}  \dot{ϑ}l  sin  ϑ   sin  ωt −2gl  cos  ωt].                                    (15.19)

Another transformation yields

mωh_{0}  \dot{ϑ}l   sin ϑ   sin  ωt =− \frac{d}{dt} (mωh_{0}l   cos ϑ   sin  ωt)+mω^{2}h_{0}l   cos  ϑ   cos  ωt,

so that the Lagrangian finally reads

L = \frac{m}{2} [\dot{ϑ}^{2}l^{2} +2ω^{2}h_{0}l   cos  ϑ   cos  ωt −2gl   cos  ϑ].                                  (15.20)

From this, one obtains of course the equation of motion as in Exercise 15.7.

We consider ϑ as a generalized coordinate with the appropriate mass coefficient ml^{2}. The equation of motion then reads

ml^{2}\ddot{ϑ} = mgl   sin  ϑ − mω^{2}h_{0}l   sin  ϑ   cos   ωt

 

=−\frac{du}{dϑ} + f                                    (15.21)

with u = mgl   cosϑ   and   f =−mω^{2}h_{0}l   sin  ϑ   cos  ωt. The additional force f is due to the motion of the hinge. For very fast oscillations of the hinge, we assume that the motion of the pendulum in the potential u is superposed by quick oscillations ξ :

ϑ(t) =\widetilde{ϑ}(t)+ξ(t).

The average value of the oscillations over a period 2π/ω equals zero, while \widetilde{ϑ} changes only slowly; therefore,

\widetilde{ϑ}(t) = \frac{ω}{2π} \int\limits_{0}^{2π/ω}{ϑ(t) dt} =\widetilde{ϑ}(t).                                           (15.22)

Equations (15.21) with (15.22) can then be written as

ml^{2} \ddot{\widetilde{ϑ}}+ ml^{2}  \ddot{ξ}(t)=−\frac{du}{dϑ}+f (ϑ).

Because f (ϑ) = f (\widetilde{ϑ}+ ξ) = f (\widetilde{ϑ}) + ξdf/dϑ, an expansion up to first order in ξ yields

ml^{2} \ddot{\widetilde{ϑ}} +ml^{2}  \ddot{ξ} =−\frac{dU}{d \widetilde{ϑ}} − ξ \frac{d^{2}U}{d\widetilde{ϑ}^{2}}+f (\widetilde{ϑ})+ξ \frac{df}{d\widetilde{ϑ}}.                                            (15.23)

The dominant terms for the oscillations are ml^{2}  \ddot{ξ}   and   f (\widetilde{ϑ}):

ml^{2}  \ddot{ξ} = f (\widetilde{ϑ})

 

⇒ \ddot{ξ} =−\frac{ω^{2}h_{0}}{l}  sin  \widetilde{ϑ}   cos  ωt,

and from this, we obtain

ξ = \frac{h_{0}}{l} sin  \widetilde{ϑ}   cos  ωt =− \frac{f}{mω^{2}l^{2}} .                                          (15.24)

We now calculate an effective potential created by the oscillations, and for this purpose we average (15.23) over a period 2π/ω (the mean values over ξ and f vanish):

ml^{2}  \ddot{\widetilde{ϑ}} =−\frac{dU}{d\widetilde{ϑ}}+\overline{ξ \frac{df}{d\widetilde{ϑ}} }=−\frac{dU}{d \widetilde{ϑ}} − \frac{1}{mω^{2}l^{2}} \overline{f \frac{df}{d \widetilde{ϑ}}} .

This can be written as

ml^{2} \ddot{\widetilde{ϑ}} =−\frac{dU_{eff}}{d \widetilde{ϑ}}       with         U_{eff} = U + \frac{1}{2mω^{2} −l^{2}} \overline{f^{2}}.                                          (15.25)

Because \overline{cos^{2}  ωt} = 1/2, we get

U_{eff} = U + \frac{mω^{2}h^{2}_{0}}{4} sin^{2}  ϑ

 

= mgl  cos  ϑ + \frac{mω^{2}h^{2}_{0}}{4} sin^{2}  ϑ.                                                         (15.26)

The minima of U_{eff} give the stable equilibrium positions:

\frac{dU_{eff}}{dϑ} =− mgl  sin  ϑ + \frac{mω^{2}h^{2}_{0}}{4}  sin  ϑ   cos  ϑ  \overset{!}{=} 0

 

⇒ sin  ϑ = 0       or          cos  ϑ = \frac{2gl}{ω^{2}h^{2}_{0}}.                                            (15.27)

From this, it follows that for any ω the position vertically downwards (ϑ = π) is stable. ϑ = 0 is excluded because U_{eff}(ϑ = 0) = mgl. Additional stable equilibrium positions arise for ω^{2} > 2gl/h^{2}_{0} with the angle given above.

Related Answered Questions

Question: 15.10

Verified Answer:

Conservation of the center of gravity here reads [...
Question: 15.11

Verified Answer:

Conservation of the center of gravity and of angul...