Question 15.10: Calculate the normal frequencies of a symmetric molecule ABA...

Calculate the normal frequencies of a symmetric molecule ABA of triangula shape:

15.14
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Conservation of the center of gravity here reads

m_{A}(x_{1} +x_{3})+m_{B}x_{2} = 0,                 m_{A}(y_{1} + y_{3})+ m_{B}y_{2} = 0.

For angular momentum conservation, we go to the rest position of atom B, and because m_{1} = m_{3} = m_{A}, it follows that

r_{10} ×x_{1} +r_{30} ×x_{3} = 0.

We have

r_{10} ×x_{1} = |r_{10}|(−x_{1}   cos  α + y_{1}   sin  α)e,

 

r_{30} ×x_{3} = |r_{30}|(−x_{3}   cos  α + y_{3}   sin  α)e,

Because |r_{10}| = |r_{30}|, the angular momentum conservation law follows:

sin  α(y_{1} −y_{3}) = cos  α(x_{1} + x_{3})       or         y_{1} −y_{3} = cot  α(x_{1} +x_{3}).

The changes δl_{1}   and   δl_{2} of the distances AB and BA result by projection of the vectors x_{1} − x_{2}   and   x_{3} −x_{2} onto the directions of the lines AB and BA:

δl_{1} = (x_{1} − x_{2}) sin  α +(y_{1} − y_{2})  cos  α,

 

δl_{2} = -(x_{3} − x_{2}) sin  α +(y_{3} − y_{2})  cos  α,

The change of the angle 2α =∢ (ABA) is found by projection of the vectors x_{1} − x_{2}   and   x_{3} − x_{2} onto the directions orthogonal to the line segments AB and BA:

δ = \frac{1}{l} \left[ (x_{1} −x_{2}) cos  α −(y_{1} −y_{2})   sin  α\right] + \frac{1}{l} \left[−(x_{3} − x_{2})   cos  α − (y_{3} − y_{2})  sin  α\right]

We write the Lagrangian of the molecule as

L = \frac{m_{A}}{2} (\dot{x}^{2}_{1}+ \dot{x}^{2}_{3} )+ \frac{m_{B}}{2} \dot{x}^{2}_{2} − \frac{K_{1}}{2}\left[(δl_{1})^{2} +(δl_{2})^{2}\right] − \frac{K_{2}}{2} (lδ)^{2}.

Here, (K_{1}/2)[(δl_{1})^{2} +(δl_{2})^{2}] is the potential energy of the rotation, and K_{2}(lδ)^{2}/2 is the potential energy of the bending of the molecule. We adopt as new coordinates

Q_{α} = x_{1} +x_{3},               q_{s  1} = x_{1} − x_{3},                 q_{s  2} = y_{1} +y_{3},

and then have

x_{1} = \frac{1}{2}(Q_{α} +q_{s 1}),                    x_{2} =−\frac{m_{A}}{m_{B}}Q_{α},                    x_{3} = \frac{1}{2} (Q_{α} −q_{s 1}),

 

y_{1} = \frac{1}{2} (q_{s 2} +Q_{α}  cot  α),                   y_{2} =−\frac{m_{A}}{m_{B}}q_{s 2},                          y_{3} = \frac{1}{2}(q_{s 2} −Q_{α}   cot  α).

Because y_{1} −y_{3} =Q_{α}  cot  α, we find for L

L = \frac{m_{A}}{4} \left(\frac{2m_{A}}{m_{B}}+ \frac{1}{sin^{2}  α}\right)\dot{Q}^{2}_{α} + \frac{m_{A}}{4} \dot{q}^{2}_{s 1}+ \frac{m_{A}μ}{4m_{B}} \dot{q}^{2}_{s 2}

 

−Q^{2}_{α} \frac{K_{1}}{4} \left(\frac{2m_{A}}{m_{B}}+ \frac{1}{sin^{2}  α}\right) \left(1+ \frac{2m_{A}}{m_{B}} sin^{2}  α\right)

 

− \frac{q^{2}_{s 1}}{4} (K_{1}  sin^{2}  α + 2K^{2}   cos^{2}  α) −q^{2}_{s 2} \frac{μ^{2}}{4m^{2}_{B}} (K_{1}  cos^{2}  α +2K^{2}  sin^{2}  α)

 

+ q_{s 1}q_{s 2} \frac{μ}{2m_{B}} (2K_{2} −K_{1}) sin α cos  α.

Obviously, Q_{α} is a normal coordinate, with the vibration frequency

ω^{2}_{α} = \frac{K_{1}}{m_{A}} \left(1 + \frac{2m_{A}}{m_{B}} sin^{2}  α\right).

Pure Q_{α}-vibrations occur for x_{1} = x_{3}, y_{1} = −y_{3}; i.e., Q_{α} describes antisymmetric vibrations with respect to the y-axis in Fig. 15.16.

The eigenfrequencies ω_{s 1}   and   ω_{s 2} of the normal vibrations for q_{s 1}   and   q_{s 2} must be determined by the characteristic equation

ω^{4} −ω^{2} \left[ \frac{K_{1}}{m_{A}} \left(1+ \frac{2m_{A}}{m_{B}} cos^{2}  α\right) + \frac{2K_{2}}{m_{A}} \left(1+ \frac{2m_{A}}{m_{B}}sin^{2}  α\right)\right]+ \frac{2μK_{1}K_{2}}{m_{B}m^{2}_{A}}= 0.

The coordinates q_{s 1}   and   q_{s 2} correspond to vibrations that are symmetric about the y-axis (Fig. 15.17):

(x_{1} =−x_{3},     Q_{α} = 0      ⇒           y_{1} = y_{3}).
15.15
15.16
15.17

Related Answered Questions

Question: 15.11

Verified Answer:

Conservation of the center of gravity and of angul...