Question 6.S.P.8: Determine the effective extensional and flexural moduli, the...

Determine the effective extensional and flexural moduli, thermal expansion coefficients, and moisture expansion coefficients for a [30/0/90]_{s} graphite-epoxy laminate. Use material properties listed for graphite-epoxy in Table 3 of Chap. 3, and assume that each ply has a thickness of 0.125 mm.

Table 3 Nominal Material Properties for Common Unidirectional Composites
Property Glass/epoxy Kevlar/epoxy Graphite/epoxy
E_{11} 55 GPa (8.0 Msi) 100 GPa (15 Msi) 170 GPa (25 Msi)
E_{22} 16 GPa (2.3 Msi) 6 GPa (0.90 Msi) 10 GPa (1.5 Msi)
ν_{12} 0.28 0.33 0.30
G_{12} 7.6 GPa (1.1 Msi) 2.1 GPa (0.30 Msi) 13 GPa (1.9 Msi)
σ_{11}^{fT} 1050 MPa (150 ksi) 1380 MPa (200 ksi) 1500 MPa (218 ksi)
σ_{11}^{fC} 690 MPa (100 ksi) 280 MPa (40 ksi) 1200 MPa (175 ksi)
σ_{22}^{yT} 45 MPa (5.8 ksi) 35 MPa (2.9 ksi) 50 MPa (7.25 ksi)
σ_{22}^{yC} 120 MPa (16 ksi) 105 MPa (15 ksi) 100 MPa (14.5 ksi)
σ_{22}^{fT} 55 MPa (7.0 ksi) 45 MPa (4.3 ksi) 70 MPa (10 ksi)
σ_{22}^{fC} 140 MPa (20 ksi) 140 Msi (20 ksi) 130 MPa (18.8 ksi)
τ_{12}^{y} 40 MPa (4.4 ksi) 40 MPa (4.0 ksi) 75 MPa (10.9 ksi)
τ_{12}^{f} 70 MPa (10 ksi) 60 MPa (9 ksi) 130 MPa (22 ksi)
α_{11} 6.7  μ/m °C

(3.7 μin./in. °F)

-3.6 μm/m °C

(-2.0 μin./in. °F)

-0.9 μm/m °C

(-0.5 μin./in. °F)

α_{22} 25 μ/m °C

(14 μin./in. °F)

58 μm/m °C

(32 μin./in. °F)

27 μm/m °C

(15 μin./in. °F)

β_{11} 100 μm/m %M

(100 μin./in. %M)

175 μm/m %M

(175 μin./in. %M)

50 μm/m %M

(50 μin./in. %M)

β_{22} 1200 μm/m %M

(1200 μin./in. %M)

1700 μm/m %M

(1700 μin./in. %M)

1200 μm/m %M

(1200 μin./in. %M)

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

As described in this section, effective moduli are calculated using various elements of the [abd] matrix. A six-ply symmetrical laminate is considered in this problem. The total laminate thickness is t=6(0.000125
m)=0.000750 m. Using methods discussed in Sec. 6, the [ABD] matrix is determined to be:

[ABD] = \left[\begin{matrix} 72.2 \times 10^{6} & 8.02 \times 10^{6} & 12.0 \times 10^{6} &0 &0&0\\ 8.02 \times 10^{6} & 52.0 \times 10^{6}& 5.38 \times 10^{6} &0 &0&0\\12.0 \times 10^{6} & 5.38 \times 10^{6} & 15.5 \times 10^{6} &0 &0&0 \\ 0 &0&0 & 4.23 & 0.676 & 1.19 \\ 0 &0&0 & 0.676 & 0.988 & 0.532 \\ 0 &0&0 & 1.19 & 0.532 & 1.03\end{matrix} \right]

Because the laminate is symmetrical, all elements of the B_{ij} matrix are zero, as expected. We obtain the [abd] by inverting the [ABD] numerically:

[abd] = \left[\begin{matrix} 16.0 \times 10^{-9} & -1.23 \times 10^{-9} & -12.0 \times 10^{-9} &0 &0&0\\ -1.23 \times 10^{-9} & 20.0 \times 10^{-9}& -6.0 \times 10^{-9} &0 &0&0\\-12.0 \times 10^{-9} & -6.0 \times 10^{-9} & 75.8 \times 10^{-9} &0 &0&0 \\ 0 &0&0 & 3.51 \times 10^{-1} & -2.92 \times 10^{-2} & -3.92 \times 10^{-1} \\ 0 &0&0 & -2.92 \times 10^{-2}& 1.408& -6.96 \times 10^{-1} \\ 0 &0&0 & -3.92 \times 10^{-1} & -6.96 \times 10^{-1} & 1.79\end{matrix} \right]

The effective extensional moduli of the laminate can now be calculated using Eqs. (63)–(70b):

\overline{E}_{xx}^{ex} =\frac{\overline{\sigma _{xx}}}{ν_{xx}^{o}} = \frac{(N_{xx}/t)}{(a_{11}N_{xx})} = \frac{1}{ta_{11}}       (63)

\overline{ν}_{xy}^{ex} =\frac{ν _{yy}^{o}}{ν _{xx}^{o}} = \frac{-a_{12}N_{xx}}{a_{11}N_{xx}} = \frac{-a_{12}}{a_{11}}      (64)

\overline{\eta }_{xx,xy}^{ex} =\frac{\gamma _{xy}^{o}}{ν_{xx}^{o}} = \frac{-a_{16}N_{xx}}{a_{11}N_{xx}} = \frac{a_{16}}{a_{11}}      (65)

ν_{xx}^{o}= a_{12} N_{yy} (66a)

ν _{yy}^{o}= a_{22} N_{yy} (66b)

\gamma _{xy}^{o} = a_{26 } N_{yy}(66c)

\overline{E}_{yy}^{ex} = \frac{1}{ta_{22}}    (67 a)

\overline{ν}_{yx}^{ex} = \frac{-a_{12}}{a_{22}}   (67b)

\overline{\eta }_{yy,xy}^{ex} = \frac{a_{26}}{a_{22}}   (67c)

ε_{xx}^{o}= a_{16} N_{xy} (68a)

ε _{yy}^{o}= a_{26} N_{xy} (68b)

\gamma _{xy}^{o} = a_{66 } N_{xy}(68c)

\overline{G}_{xy}^{ex} =\frac{\overline{\tau }_{xy}}{\gamma _{xy}^{o}} = \frac{(N_{xy}/t)}{a_{66}N_{xy}}= \frac{1}{ta_{66}}  (69)

\overline{\eta }_{xy,xx}^{ex} = \frac{ν_{xx}^{o}}{\gamma _{xy}^{o}}= \frac{a_{16}N_{xx}}{a_{66}N_{xx}}= \frac{a_{16}}{a_{66}} (70 a)

\overline{\eta }_{xy,yy}^{ex} = \frac{ν _{yy}^{o}}{\gamma _{xy}^{o}}=\frac{a_{26}}{a_{66}} (70 b)

 

\overline{E}_{xx}^{ex} = \frac{1}{ta_{11}}  = \frac{1}{(  0.000750) (16.0 × 10^{-9} )} =83.3  GPa

 

\overline{E}_{yy}^{ex} = \frac{1}{ta_{22}}  = \frac{1}{(  0.000750) (20 × 10^{-9} )} =66.7  GPa

 

\overline{G}_{xy}^{ex} = \frac{1}{ta_{66}}  = \frac{1}{(  0.000750) (75.8 × 10^{-9} )} =17.6  GPa

 

\overline{ν}_{xy}^{ex} = \frac{-a_{12}}{a_{11}}  = \frac{-(-1.23 × 10^{-9} )}{16.0 × 10^{-9} } =0.077

 

\overline{ν}_{yx}^{ex} = \frac{-a_{12}}{a_{22}}  = \frac{-(-1.23 × 10^{-9} )}{20 × 10^{-9} } =0.061

 

\overline{\eta }_{xx,xy}^{ex} = \frac{a_{16}}{a_{11}}  = \frac{-12 × 10^{-9} }{16× 10^{-9} } =-0.75

 

\overline{\eta }_{yy,xy}^{ex} = \frac{a_{26}}{a_{22}}  = \frac{-6.0 × 10^{-9} }{20 × 10^{-9} } =-0.30

 

\overline{\eta }_{xy,xx}^{ex} = \frac{a_{16}}{a_{66}}  = \frac{-12.0 × 10^{-9} }{75.8 × 10^{-9} } =-0.16

 

\overline{\eta }_{xy,yy}^{ex} = \frac{a_{26}}{a_{66}}  = \frac{-6.0 × 10^{-9} }{75.8 × 10^{-9} } =-0.079

Effective flexural properties are found to be:

\overline{E}_{xx}^{fl} = \frac{12}{d_{11}t^{3}}  = \frac{12}{(  0.351) (0.000750)^{3}} =81.0  GPa

 

\overline{E}_{yy}^{fl} = \frac{12}{d_{22}t^{3}}  = \frac{12}{(1.408) (0.000750)^{3}} =20.2 GPa

 

\overline{ν}_{xy}^{fl} = \frac{-d_{12}}{d_{11}}  = \frac{2.92 × 10^{-2} }{0.351} =0.083

 

\overline{ν}_{yx}^{fl} = \frac{-d_{12}}{d_{22}}  = \frac{2.92 × 10^{-2}}{1.408} =0.021

 

\overline{\eta }_{xx,xy}^{fl} = \frac{d_{16}}{d_{11}}  = \frac{-0.392 }{0.351} =-1.12

 

\overline{\eta }_{yy,xy}^{fl} = \frac{d_{26}}{d_{22}}  = \frac{-0.696}{1.408} =-0.49

Note that the values of extensional properties are quite different from anal-ogous flexural properties.
The thermal stress resultants associated with a given change in temper-ature must be determined in order to calculate the effective thermal expansion coefficients. Numerically speaking, any change in temperature can be used, but for present purposes, a unit change in temperature will be assumed (i.e., ΔT=1). Using (42a–(42f), the thermal stress resultants associated with ΔT=1 are:

N_{xx}^{M} = \Delta M \sum\limits_{k=1}^{n}{\left\{[\overline{Q}_{11}\beta _{xx} + \overline{Q}_{12}\beta _{yy} + \overline{Q}_{16}\beta _{xy} ]_{k}[z_{k} – z_{k-1}]\right\} } (42a)
N_{yy}^{M} \equiv \Delta M \sum\limits_{k=1}^{n}{\left\{[\overline{Q}_{12}\beta _{xx} + \overline{Q}_{22}\beta _{yy} + \overline{Q}_{26}\beta _{xy} ]_{k}[z_{k} – z_{k-1}]\right\} } (42b)
N_{xy}^{M} \equiv \Delta M \sum\limits_{k=1}^{n}{\left\{[\overline{Q}_{16}\beta _{xx} + \overline{Q}_{26}\beta _{yy} + \overline{Q}_{66}\beta _{xy} ]_{k}[z_{k} – z_{k-1}]\right\} } (42c)
M_{xx}^{M} = \frac{\Delta M}{2} \sum\limits_{k=1}^{n}{\left\{[\overline{Q}_{11}\beta _{xx} + \overline{Q}_{12}\beta _{yy} + \overline{Q}_{16}\beta _{xy} ]_{k}[z_{k}^{2} – z_{k-1}^{2}]\right\} } (42d)
M_{yy}^{M} = \frac{\Delta M}{2} \sum\limits_{k=1}^{n}{\left\{[\overline{Q}_{12}\beta _{xx} + \overline{Q}_{22}\beta _{yy} + \overline{Q}_{26}\beta _{xy} ]_{k}[z_{k}^{2} – z_{k-1}^{2}]\right\} } (42e)
M_{xy}^{M} = \frac{\Delta M}{2} \sum\limits_{k=1}^{n}{\left\{[\overline{Q}_{16}\beta _{xx} + \overline{Q}_{26}\beta _{yy} + \overline{Q}_{66}\beta _{xy} ]_{k}[z_{k}^{2} – z_{k-1}^{2}]\right\} } (42f)

 

N_{xx}^{T}|_{ΔT=1} = 52.3  N/m    N_{yy}^{T}|_{ΔT=1} = 94.9  N/m      N_{xy}^{T}|_{ΔT=1} = -36.9   N/m

The effective thermal expansion coefficient α_{xx} can now be calculated in accordance with Eq. (73a):

\overline{α}_{xx} = \frac{1}{ ΔT}[a_{11} N_{xx}^{T} + a_{12} N_{yy}^{T} + a_{16} N_{xy}^{T}]\\ \overline{α}_{yy} = \frac{1}{ ΔT}[a_{12} N_{xx}^{T} + a_{22} N_{yy}^{T} + a_{26} N_{xy}^{T}]\\ \overline{α}_{xy} = \frac{1}{ ΔT}[a_{16} N_{xx}^{T} + a_{26} N_{yy}^{T} + a_{66} N_{xy}^{T}]

 

\overline{α}_{xx} = \frac{1}{ ΔT}[α_{11} N_{xx}^{T} + α_{12} N_{yy}^{T} + α_{16} N_{xy}^{T}]

 

\overline{α}_{xx} = \frac{1}{ (1)}[16.0 × 10^{-9}(52.3) -1.23 × 10^{-9} (94.9) \\-12.0 × 10^{-9} (-36.9) ]

 

\overline{α}_{xx} = 1.16  μm/m – °C

Using an equivalent procedure:

\overline{α}_{yy} = 2.06  μm/m – °C    \overline{α}_{xy} = -4.00  μrad / °C

Finally, moisture stress resultants associated with a given change in moisture content must be determined in order to calculate the effective moisture expansion coefficients. Numerically speaking, any change moisture content can be used, but for present purposes, a unit change in content will be assumed (i.e., ΔM=1). Using Eq. (43), the moisture stress resultants associated with ΔM=1% are:

N_{xx} = A_{11} \varepsilon _{xx}^{o} + A_{12} \varepsilon _{yy}^{o}+ A_{16} \gamma _{xy}^{o} + B_{11} \kappa _{xx} + B_{12} \kappa _{yy} + B_{16} \kappa _{xy} – N_{xx}^{T} – N_{xx}^{M}(43a)

 

N_{xx}^{M}|_{ΔM=1} = 32,800  N/m    N_{yy}^{M}|_{ΔM=1} = 33,800  N/m      N_{xy}^{M}|_{ΔM=1} = -930   N/m

Applying Eqs. (76a) and (76b), we find:

\overline{\beta }_{xx} = \frac{1}{ ΔM}[a_{11} N_{xx}^{M} + a_{12} N_{yy}^{M} + a_{16} N_{xy}^{M}]\\\overline{\beta }_{yy} = \frac{1}{ ΔM}[a_{12} N_{xx}^{M} + a_{22} N_{yy}^{M} + a_{26} N_{xy}^{M}]\\\overline{\beta }_{xy} = \frac{1}{ ΔM}[a_{16} N_{xx}^{M} + a_{26} N_{yy}^{M} + a_{66} N_{xy}^{M}] (76a)

 

N_{xx}^{M} = \Delta M[A_{11} \overline{\beta }_{xx} +A_{12} \overline{\beta }_{yy} + A_{16} \overline{\beta }_{xy}]\\ N_{yy}^{M} = \Delta M[A_{12} \overline{\beta }_{xx} +A_{22} \overline{\beta }_{yy} + A_{26} \overline{\beta }_{xy}]\\N_{xy}^{M} = \Delta M[A_{16} \overline{\beta }_{xx} +A_{26} \overline{\beta }_{yy} + A_{66} \overline{\beta }_{xy}] (76b)

 

\overline{β}_{xx} = 494  μm/m \%M      \overline{β}_{yy} = 643  μm/m \%M    \overline{β}_{xy} = -667  μrad \%M

Related Answered Questions