Question 10.3.5: Finding the Inverse of a 2 × 2 Matrix Find the inverse (if i...
Finding the Inverse of a 2 × 2 Matrix
Find the inverse (if it exists) of each matrix.
a. A=\left[\begin{array}{ll}5 & 2 \\4 & 3\end{array}\right] b. B=\left[\begin{array}{ll}4 & 6 \\2 & 3\end{array}\right]
Learn more on how we answer questions.
a. For the matrix A, a=5, b=2, c=4, \text { and } d=3.
Here a d-b c=(5)(3)-(2)(4)=15-8=7 \neq 0; so A is invertible and
A^{-1}=\frac{1}{7}\left[\begin{array}{rr}3 & -2 \\-4 & 5\end{array}\right] \quad \text { Substitute for } a, b, c \text {, and } d \text { in } \frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\-c & a\end{array}\right] \text {. }
=\left[\begin{array}{rr}\frac{3}{7} & -\frac{2}{7} \\-\frac{4}{7} & \frac{5}{7}\end{array}\right] Scalar multiplication
You should verify that A A^{-1}=I.
b. For the matrix B, a=4, b=6, c=2, \text { and } d=3 \text {; so } a d-b c=(4)(3)-(6)(2) =12-12=0. Therefore, the matrix B does not have an inverse.