Question 10.4.3: Evaluating a 3 by 3 Determinant Find the determinant of A = ...
Evaluating a 3 by 3 Determinant
Find the determinant of A=\left[\begin{array}{rrr}2 & 3 & 4 \\1 & -2 & 2 \\3 & 4 & -1\end{array}\right].
Learn more on how we answer questions.
Expanding by the first row, we have |A|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}, where
\begin{aligned}&A_{11}=(-1)^{1+1} M_{11}=(1)\left|\begin{array}{rr}-2 & 2 \\4 & -1\end{array}\right| \\&A_{12}=(-1)^{1+2} M_{12}=(-1)\left|\begin{array}{rr}1 & 2 \\3 & -1\end{array}\right| \\&A_{13}=(-1)^{1+3} M_{13}=(1)\left|\begin{array}{rr}1 & -2 \\3 & 4\end{array}\right|\end{aligned}
Thus,
\left|\begin{array}{rrr}2 & 3 & 4 \\1 & -2 & 2 \\3 & 4 & -1\end{array}\right|=2(1)\left|\begin{array}{rr}-2 & 2 \\4 & -1\end{array}\right|+3(-1)\left|\begin{array}{rr}1 & 2 \\3 & -1\end{array}\right|+4(1)\left|\begin{array}{rr}1 & -2 \\3 & 4\end{array}\right|
=2(2-8)-3(-1-6)+4(4+6) Evaluate determinants of order 2.
= -12 + 21 + 40 = 49 Simplify.
