Question 10.4.5: Using Cramer’s Rule Use Cramer’s Rule to solve the system of...

Using Cramer’s Rule

Use Cramer’s Rule to solve the system of equations.

\left\{\begin{array}{r}7 x+y+z-1=0 \\5 x+3 z-2 y=4 \\4 x-z+3 y=0\end{array}\right.

STUDY TIP
When you apply Cramer’s Rule, make sure that all linear equations are written in the form

ax + by + cz = k.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, rewrite the system of equations so that the terms on the left side of the equal signs are in the proper order and only the constant terms appear on the right side.

\left\{\begin{array}{l}7 x+y+z=1 \\5 x-2 y+3 z=4 \\4 x+3 y-z=0\end{array}\right.

Step 1

D=\left|\begin{array}{rrr}7 & 1 & 1 \\5 & -2 & 3 \\4 & 3 & -1\end{array}\right|          D is the determinant of the coefficient matrix.

=7\left|\begin{array}{rr}-2 & 3 \\3 & -1\end{array}\right|-5\left|\begin{array}{rr}1 & 1 \\3 & -1\end{array}\right|+4\left|\begin{array}{rr}1 & 1 \\-2 & 3\end{array}\right|            Expand by column 1.

=7(2-9)-5(-1-3)+4(3+2)            Evaluate determinants of order 2.

=7(-7)-5(-4)+4(5)=-9            Simplify.

Because D ≠ 0, the system has a unique solution.

Step 2 D_{x}=\left|\begin{array}{rrr}1 & 1 & 1 \\4 & -2 & 3 \\0 & 3 & -1\end{array}\right|          Replace the x-coefficients in the first column in D with the constants.

=1\left|\begin{array}{rr}-2 & 3 \\3 & -1\end{array}\right|-4\left|\begin{array}{rr}1 & 1 \\3 & -1\end{array}\right|+0\left|\begin{array}{rr}1 & 1 \\-2 & 3\end{array}\right|              Expand by Column 1.

=1(2-9)-4(-1-3)                Evaluate determinants of order 2.

=1(-7)-4(-4)=9                Simplify.

Step 3 D_{y}=\left|\begin{array}{rrr}7 & 1 & 1 \\5 & 4 & 3 \\4 & 0 & -1\end{array}\right|          Replace column 2 in D with the constants.

=-1\left|\begin{array}{rr}5 & 3 \\4 & -1\end{array}\right|+4\left|\begin{array}{rr}7 & 1 \\4 & -1\end{array}\right|-0\left|\begin{array}{ll}7 & 1 \\5 & 3\end{array}\right|              Expand by column 2 because it contains a zero.

=-1(-5-12)+4(-7-4)            Evaluate the determinants.

= 17 – 44 = -27                  Simplify.

Step 4      D_{z}=\left|\begin{array}{rrr}7 & 1 & 1 \\5 & -2 & 4 \\4 & 3 & 0\end{array}\right|                Replace column 3 in D with the constants.

=1\left|\begin{array}{rr}5 & -2 \\4 & 3\end{array}\right|-4\left|\begin{array}{ll}7 & 1 \\4 & 3\end{array}\right|+0\left|\begin{array}{rr}7 & 1 \\5 & -2\end{array}\right|                    Expand by column 3.

=(15+8)-4(21-4)            Evaluate the determinants.

=23-4(17)=-45                          Simplify.

Step 5 Cramer’s Rule gives the following values:

x=\frac{D_{x}}{D}=\frac{9}{-9}=-1              From Steps 1 and 2

y=\frac{D_{y}}{D}=\frac{-27}{-9}=3              From Steps 1 and 3

z=\frac{D_{z}}{D}=\frac{-45}{-9}=5          From Steps 1 and 4

Therefore, the solution set is \{(-1,3,5)\}.

Check: You should check the solution.

Related Answered Questions

Question: 10.4.3

Verified Answer:

Expanding by the first row, we have |A|=a_...
Question: 10.4.1

Verified Answer:

a. \left|\begin{array}{rr}3 & -4 \\1 &a...
Question: 10.3.5

Verified Answer:

a. For the matrix A, a=5, b=2, c=4, \text {...
Question: 10.2.8

Verified Answer:

Because A is of order 2×2 and the order of B is 2×...
Question: 10.2.2

Verified Answer:

a. Because A and B have the same order, A + B is d...