Question 11.S.P.3: A [25°]12 graphite-epoxy laminate is trimmed to in-plane dim...

A [25°]_{12} graphite-epoxy laminate is trimmed to in-plane dimensions of 300×150 mm and is mounted in an assembly that provides type S4 simple supports along all four edges. The laminate is then subjected to a uniform transverse load q(x,y) = 30 kPa. No in-plane loads are applied (i.e., N_{xx} = N_{yy} = N_{xy} = 0). Determine the maximum out-of-plane displacement based on a Ritz analysis and plot the out-of-plane displacement field. Use the properties listed for graphite-epoxy in Table 3 of Chap. 3, and assume each ply has a thickness of 0.125 mm.

Table 3 Nominal Material Properties for Common Unidirectional Composites
Property Glass/epoxy Kevlar/epoxy Graphite/epoxy
E_{11} 55 GPa (8.0 Msi) 100 GPa (15 Msi) 170 GPa (25 Msi)
E_{22} 16 GPa (2.3 Msi) 6 GPa (0.90 Msi) 10 GPa (1.5 Msi)
ν_{12} 0.28 0.33 0.30
G_{12} 7.6 GPa (1.1 Msi) 2.1 GPa (0.30 Msi) 13 GPa (1.9 Msi)
σ_{11}^{fT} 1050 MPa (150 ksi) 1380 MPa (200 ksi) 1500 MPa (218 ksi)
σ_{11}^{fC} 690 MPa (100 ksi) 280 MPa (40 ksi) 1200 MPa (175 ksi)
σ_{22}^{yT} 45 MPa (5.8 ksi) 35 MPa (2.9 ksi) 50 MPa (7.25 ksi)
σ_{22}^{yC} 120 MPa (16 ksi) 105 MPa (15 ksi) 100 MPa (14.5 ksi)
σ_{22}^{fT} 55 MPa (7.0 ksi) 45 MPa (4.3 ksi) 70 MPa (10 ksi)
σ_{22}^{fC} 140 MPa (20 ksi) 140 Msi (20 ksi) 130 MPa (18.8 ksi)
τ_{12}^{y} 40 MPa (4.4 ksi) 40 MPa (4.0 ksi) 75 MPa (10.9 ksi)
τ_{12}^{f} 70 MPa (10 ksi) 60 MPa (9 ksi) 130 MPa (22 ksi)
α_{11} 6.7  μ/m °C

(3.7 μin./in. °F)

-3.6 μm/m °C

(-2.0 μin./in. °F)

-0.9 μm/m °C

(-0.5 μin./in. °F)

α_{22} 25 μ/m °C

(14 μin./in. °F)

58 μm/m °C

(32 μin./in. °F)

27 μm/m °C

(15 μin./in. °F)

β_{11} 100 μm/m %M

(100 μin./in. %M)

175 μm/m %M

(175 μin./in. %M)

50 μm/m %M

(50 μin./in. %M)

β_{22} 1200 μm/m %M

(1200 μin./in. %M)

1700 μm/m %M

(1700 μin./in. %M)

1200 μm/m %M

(1200 μin./in. %M)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Note that the plate has an aspect ratio R = 150/300 = 2.0, as was the case for the laminates considered in Sample Problems 1 and 2. A rather unusual fiber angle of 25° has been selected for consideration in this problem because it results in high relative values of D_{16} and D_{26}, resulting in an interesting distortion of the predicted out-of-plane displacement field. Specifically, for this laminate:

D_{16}/D_{11} = 0.370        D_{16} /D_{22} = 2.21

D_{26} / D_{11} = 0.126        D_{26} / D_{22} = 0.755

These relative values of D_{16} and D_{26} are quite high, at least as compared to those exhibited by the [(±45/0)_{2}]_{s} laminate considered in Sample Problem 1.

A solution for this problem was obtained using program SYMM, using M=N=10. A maximum displacement of 16.1 mm is predicted to occur at the center of the plate. A contour plot of out-of-plane displacements is shown in Fig. 6. Distortion of the displacement field due to the generally ortho-tropic nature of the [25°]_{12}  panel is obvious, especially when compared to the very slightly distorted pattern for a [(±45/0)_{2}]_{s} laminate, previously shown in Fig. 4.

4
6

Related Answered Questions