A force P of magnitude 3 N is applied to a tape wrapped around a thin hoop of mass 2.4 kg. Knowing that the body rests on a frictionless horizontal surface, determine the acceleration of (a) Point A, (b) Point B.
A force P of magnitude 3 N is applied to a tape wrapped around a thin hoop of mass 2.4 kg. Knowing that the body rests on a frictionless horizontal surface, determine the acceleration of (a) Point A, (b) Point B.
Hoop:\overline { I } =m{ r }^{ 2 }
\\ \underrightarrow { + } \sum { { F }_{ x } } =\sum { { \left( { F }_{ x } \right) }_{ eff } } :P=m\overline { a } \\ \overline { a } =\frac { P }{ m } \rightarrow \\ +\curvearrowright \sum { { M }_{ G } } =\sum { { \left( { M }_{ G } \right) }_{ eff } } :Pr=\overline { I } \alpha =m{ r }^{ 2 }\alpha \alpha \frac { P }{ mr } \curvearrowleft(a) Acceleration of Point \underrightarrow { + } { a }_{ A }=\overline { a } +r\alpha =\frac { P }{ m } +r\left( \frac { P }{ mr } \right) =2\frac { P }{ m }
\\ { a }_{ A }=2\frac { 3N }{ 2.4kg } =2.5m/{ s }^{ 2 } \\ { a }_{ A }=2.50m/{ s }^{ 2 }(b) Acceleration of Point B. \underrightarrow { + } { a }_{ A }=\overline { a } -r\alpha =\frac { P }{ m } +r\left( \frac { P }{ mr } \right) =0\\ \\
{ a }_{ B }=0