Question 5.1: The geocentric position vectors of a space object at three s...

The geocentric position vectors of a space object at three successive times are

r _{1}=-294.32 \hat{ I }+4265.1 \hat{ J }+5986.7 \hat{ K }( km )
r _{2}=-1365.5 \hat{ I }+3637.6 \hat{ J }+6346.8 \hat{ K }( km )
r _{3}=-2940.3 \hat{ I }+2473.7 \hat{ J }+6555.8 \hat{ K }( km )

Determine the classical orbital elements using Gibbs’ procedure.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1:

r_{1}=\sqrt{(-294.32)^{2}+4265.1^{2}+5986.7^{2}}=7356.5 km
r_{2}=\sqrt{(-1365.5)^{2}+3637.6^{2}+6346.8^{2}}=7441.7 km
r_{3}=\sqrt{(-2940.3)^{2}+2473.7^{2}+6555.8^{2}}=7598.9 km

Step 2:

C _{12}=\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-294.32 & 4265.1 & 5986.7 \\-1365.5 & 3637.6 & 6346.8\end{array}\right|
=(5.292 \hat{ I }-6.3066 \hat{ J }+4.7531 \hat{ K }) \times 10^{6}\left( km ^{2}\right)
C _{23}=\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-1365.5 & 3637.6 & 6346.8 \\-2940.3 & 2473.7 & 6555.8\end{array}\right|

=(8.1473 \hat{ I }-9.7095 \hat{ J }+7.3179 \hat{ K }) \times 10^{6}\left( km ^{2}\right)

C _{31}=\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-2940.3 & 2473.7 & 6555.8 \\-294.32 & 4265.1 & 5986.7\end{array}\right|
=(-1.3151 \hat{ I }+1.5673 \hat{ J }-1.1812 \hat{ K }) \times 10^{6}\left( km ^{2}\right)

Step 3:

\hat{ C }_{23}=\frac{ C _{23}}{\left\| C _{23}\right\|}=\frac{8.1473 \hat{ I }-9.7095 \hat{ J }+7.3179 \hat{ K }}{\sqrt{8.1473^{2}+(-9.7095)^{2}+7.3179^{2}}}
=0.55667 \hat{ I }-0.66341 \hat{ J }+0.5000 \hat{ K }

Therefore

\hat{ u }_{r_{1}} \cdot \hat{ C }_{23}=\frac{-294.32 \hat{ I }+4265.1 \hat{ J }+5986.7 \hat{ K }}{7356.5} \cdot(0.55667 \hat{ I }-0.66341 \hat{ J }+0.5000 \hat{ K })
=6.9200 \times 10^{-20}

This certainly is close enough to zero for our purposes. The three vectors r _{1}, r _{2} and r _{3} are coplanar.

Step 4:

N =r_{1} C _{23}+r_{2} C _{31}+r_{3} C _{12}
=7356.5\left[(8.1473 \hat{ I }-9.7095 \hat{ J }+7.3179 \hat{ K }) \times 10^{6}\right] +7441.7\left[(-1.3151 \hat{ I }+1.5673 \hat{ J }-1.1812 \hat{ K }) \times 10^{6}\right] +7598.9\left[(5.292 \hat{ I }-6.3066 \hat{ J }+4.7531 \hat{ K }) \times 10^{6}\right]

or

N =(2.2807 \hat{ I }-2.7181 \hat{ J }+2.0486 \hat{ K }) \times 10^{9}\left( km ^{3}\right)

so that

N=\sqrt{\left[2.2807^{2}+(-2.7181)^{2}+2.0486^{2}\right] \times 10^{18}}
=4.0971 \times 10^{9}\left( km ^{3}\right)
D = C _{12}+ C _{23}+ C _{31}

=\left[(5.292 \hat{ I }-6.3066 \hat{ J }+4.7531 \hat{ K }) \times 10^{6}\right]+[(8.1473 \hat{ I }-9.7095 \hat{ J }\left.+7.3179 \hat{ K }) \times 10^{6}\right]+\left[(-1.3151 \hat{ I }+1.5673 \hat{ J }-1.1812 \hat{ K }) \times 10^{6}\right]

or

D =(2.8797 \hat{ I }-3.4319 \hat{ J }+2.5866 \hat{ K }) \times 10^{6}\left( km ^{2}\right)

so that

D =\sqrt{\left[2.8797^{2}+(-3.4319)^{2}+2.5866^{2}\right] \times 10^{12}}
=5.1731 \times 10^{5}\left( km ^{2}\right)

Lastly,

S = r _{1}\left(r_{2}-r_{3}\right)+ r _{2}\left(r_{3}-r_{1}\right)+ r _{3}\left(r_{1}-r_{2}\right)
=(-294.32 \hat{ I }+4265.1 \hat{ J }+5986.7 \hat{ K })(7441.7-7598.9)+(-1365.5 \hat{ I }+3637.6 \hat{ J }+6346.8 \hat{ K })(7598.9-7356.5) +(-2940.3 \hat{ I }+2473.7 \hat{ J }+6555.8 \hat{ K })(7356.5-7441.7)

or

S =-34213 \hat{ I }+533.51 \hat{ J }+38798 \hat{ K }\left( km ^{2}\right)

Step 5:

v _{2}=\sqrt{\frac{\mu}{N D}}\left(\frac{ D \times r _{2}}{r_{2}}+ S \right)
=\sqrt{\frac{398600}{\left(4.0971 \times 10^{9}\right)\left(5.1731 \times 10^{3}\right)}}\times\left[\frac{\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\2.8797 \times 10^{6} & -3.4319 \times 10^{6} & 2.5866 \times 10^{6} \\-1365.5 & 3637.6 & 6346.8\end{array}\right|}{7441.7}+\left(\begin{array}{c}-34213 \hat{ I }+533.51 \hat{ J } \\+38798 \hat{ K }\end{array}\right)\right]

or

v _{2}=-6.2171 \hat{ I }-4.0117 \hat{ J }+1.5989 \hat{ K }( km / s )

Step 6:
Using r _{2} \text { and } v _{2}, Algorithm 4.1 yields the orbital elements:

a = 8000km
e = 0.1
i = 60°
Ω = 40°
ω = 30°
θ = 50°  (for position vector r _{2})
The orbit is sketched in Figure 5.2.

5.2

Related Answered Questions

Question: 5.5

Verified Answer:

Proceeding as in Example 5.4 we find that the Juli...