Question 5.1: The geocentric position vectors of a space object at three s...
The geocentric position vectors of a space object at three successive times are
r _{1}=-294.32 \hat{ I }+4265.1 \hat{ J }+5986.7 \hat{ K }( km )
r _{2}=-1365.5 \hat{ I }+3637.6 \hat{ J }+6346.8 \hat{ K }( km )
r _{3}=-2940.3 \hat{ I }+2473.7 \hat{ J }+6555.8 \hat{ K }( km )
Determine the classical orbital elements using Gibbs’ procedure.
Learn more on how we answer questions.
Step 1:
r_{1}=\sqrt{(-294.32)^{2}+4265.1^{2}+5986.7^{2}}=7356.5 km
r_{2}=\sqrt{(-1365.5)^{2}+3637.6^{2}+6346.8^{2}}=7441.7 km
r_{3}=\sqrt{(-2940.3)^{2}+2473.7^{2}+6555.8^{2}}=7598.9 km
Step 2:
C _{12}=\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-294.32 & 4265.1 & 5986.7 \\-1365.5 & 3637.6 & 6346.8\end{array}\right|
=(5.292 \hat{ I }-6.3066 \hat{ J }+4.7531 \hat{ K }) \times 10^{6}\left( km ^{2}\right)
C _{23}=\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-1365.5 & 3637.6 & 6346.8 \\-2940.3 & 2473.7 & 6555.8\end{array}\right|
C _{31}=\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-2940.3 & 2473.7 & 6555.8 \\-294.32 & 4265.1 & 5986.7\end{array}\right|
=(-1.3151 \hat{ I }+1.5673 \hat{ J }-1.1812 \hat{ K }) \times 10^{6}\left( km ^{2}\right)
Step 3:
=0.55667 \hat{ I }-0.66341 \hat{ J }+0.5000 \hat{ K }
Therefore
\hat{ u }_{r_{1}} \cdot \hat{ C }_{23}=\frac{-294.32 \hat{ I }+4265.1 \hat{ J }+5986.7 \hat{ K }}{7356.5} \cdot(0.55667 \hat{ I }-0.66341 \hat{ J }+0.5000 \hat{ K })
=6.9200 \times 10^{-20}
This certainly is close enough to zero for our purposes. The three vectors r _{1}, r _{2} and r _{3} are coplanar.
Step 4:
=7356.5\left[(8.1473 \hat{ I }-9.7095 \hat{ J }+7.3179 \hat{ K }) \times 10^{6}\right] +7441.7\left[(-1.3151 \hat{ I }+1.5673 \hat{ J }-1.1812 \hat{ K }) \times 10^{6}\right] +7598.9\left[(5.292 \hat{ I }-6.3066 \hat{ J }+4.7531 \hat{ K }) \times 10^{6}\right]
or
N =(2.2807 \hat{ I }-2.7181 \hat{ J }+2.0486 \hat{ K }) \times 10^{9}\left( km ^{3}\right)so that
N=\sqrt{\left[2.2807^{2}+(-2.7181)^{2}+2.0486^{2}\right] \times 10^{18}}
=4.0971 \times 10^{9}\left( km ^{3}\right)
D = C _{12}+ C _{23}+ C _{31}
or
D =(2.8797 \hat{ I }-3.4319 \hat{ J }+2.5866 \hat{ K }) \times 10^{6}\left( km ^{2}\right)so that
D =\sqrt{\left[2.8797^{2}+(-3.4319)^{2}+2.5866^{2}\right] \times 10^{12}}
=5.1731 \times 10^{5}\left( km ^{2}\right)
Lastly,
S = r _{1}\left(r_{2}-r_{3}\right)+ r _{2}\left(r_{3}-r_{1}\right)+ r _{3}\left(r_{1}-r_{2}\right)or
S =-34213 \hat{ I }+533.51 \hat{ J }+38798 \hat{ K }\left( km ^{2}\right)Step 5:
v _{2}=\sqrt{\frac{\mu}{N D}}\left(\frac{ D \times r _{2}}{r_{2}}+ S \right)or
v _{2}=-6.2171 \hat{ I }-4.0117 \hat{ J }+1.5989 \hat{ K }( km / s )Step 6:
Using r _{2} \text { and } v _{2}, Algorithm 4.1 yields the orbital elements:
a = 8000km
e = 0.1
i = 60°
Ω = 40°
ω = 30°
θ = 50° (for position vector r _{2})
The orbit is sketched in Figure 5.2.
