Question 5.7: At the instant when the Greenwich sidereal time is θG =126.7...
At the instant when the Greenwich sidereal time is \theta_{G}=126.7^{\circ}, the geocentric equatorial position vector of the International Space Station is
r =-5368 \hat{ I }-1784 \hat{ J }+3691 \hat{ K }( km )Find the topocentric right ascension and declination at sea level (H =0), latitude φ=20° and east longitude Λ=60°.
Learn more on how we answer questions.
According to Equation 5.52, the local sidereal time at the observation site is
\theta=\theta_{G}+\Lambda=126.7+60=186.7^{\circ}Substituting R_{e}=6378km, f =0.003353 (Table 4.3), θ =189.7° and φ=20° into Equation 5.56 yields the geocentric position vector of the site:
R =\left[\frac{R_{e}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \cos \phi(\cos \theta \hat{ I }+\sin \theta \hat{ J })+\left[\frac{R_{e}(1-f)^{2}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \sin \phi \hat{ K } (5.56)
R =-5955 \hat{ I }-699.5 \hat{ J }+2168 \hat{ K }( km )Having found R, we obtain the position vector of the space station relative to the site from Equation 5.53:
\varrho= r – R
=(-5368 \hat{ I }-1784 \hat{ J }+3691 \hat{ K })-(-5955 \hat{ I }-699.5 \hat{ J }+2168 \hat{ K })
=586.8 \hat{ I }-1084 \hat{ J }+1523 \hat{ K }( km )
The magnitude of this vector is ϱ = 1960 km, so that
\hat{\varrho}=\frac{\varrho}{\varrho}=0.2994 \hat{ I }-0.5533 \hat{ J }+0.7773 \hat{ K }Comparing this equation with Equation 5.57 we see that
\hat{\varrho}=\cos \delta \cos \alpha \hat{ I }+\cos \delta \sin \alpha \hat{ J }+\sin \delta \hat{ K } (5.57)
cos δ cos α = 0.2997
cos δ sin α = −0.5524
sin δ = 0.7778
From these we obtain the topocentric declension,
\delta=\sin ^{-1} 0.7773=\underline{51.01^{\circ}} (a)
as well as
\sin \alpha=\frac{-0.5533}{\cos \delta}=-0.8795
\cos \alpha=\frac{0.2994}{\cos \delta}=0.4759
Thus
\alpha=\cos ^{-1}(0.4759)=61.58^{\circ} (first quadrant) or 298.4° (fourth quadrant)
Since sin α is negative, α must lie in the fourth quadrant, so that the right ascension is
α = 298.4° (b)
Compare (a) and (b) with the geocentric right ascension \alpha_{0} and declination \delta_{0}, which were computed in Example 4.2,
Table 4.3 Oblateness and second zonal harmonics | ||
Planet | Oblateness | J _{2} |
Mercury | 0.000 | 60 \times 10^{-6} |
Venus | 0.000 | 4.458 \times 10^{-6} |
Earth | 0.003353 | 1.08263 \times 10^{-3} |
Mars | 0.00648 | 1.96045 \times 10^{-3} |
Jupiter | 0.06487 | 14.736 \times 10^{-3} |
Saturn | 0.09796 | 16.298 \times 10^{-3} |
Uranus | 0.02293 | 3.34343 \times 10^{-3} |
Neptune | 0.01708 | 3.411 \times 10^{-3} |
Pluto | 0.000 | – |
(Moon) | 0.0012 | 202.7 \times 10^{-6} |