Question 11.5: Find the optimal mass for a three-stage launch vehicle which...

Find the optimal mass for a three-stage launch vehicle which is required to lift a 5000 kg payload to a speed of 10 km/s.

For each stage, we are given that
Stage 1 I_{sp_{1}} = 400 s (c_{1} = 3.924 km/s)\varepsilon_{1} = 0.10
Stage 2 I_{sp_{2}} = 350 s (c_{2} = 3.434 km/s) \varepsilon_{2} = 0.15
Stage 3 I_{sp_{3}} = 300 s (c_{3} = 2.943 km/s)\varepsilon_{3} = 0.20

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting this data into Equation 11.86, we get
\sum\limits_{i=1}^{N} c_{i}\ln (c_{i}\eta -1)-\ln \eta \sum\limits_{i=1}^{N}c_{i}-\sum\limits_{i=1}^{N}c_{i}\ln c_{i}\varepsilon _{i}=v_{bo}              (11.86)
3.924 \ln(3.924η − 1) + 3.434 \ln(3.434η − 1) + 2.943 \ln(2.943η − 1)

− 10.30 \ln η + 7.5089 = 10
As can be checked by substitution, the iterative solution of this equation is

η = 0.4668

Substituting η into Equations 11.87 yields the optimum mass ratios,

\begin{matrix}n_{i}=\frac{c_{i}\eta -1}{c_{i}\varepsilon _{i}\eta }, &i = 1, 2, … , N\end{matrix}                                          (11.87)
\begin{matrix} n_{1} = 4.541&n_{2} = 2.507 & n_{3} = 1.361 \end{matrix}
For the step masses, we appeal to Equations 11.88 to obtain

m_{N}=\frac{n_{N}-1}{1-n_{N}\varepsilon _{N}}m_{PL}

 

m_{N-1}=\frac{n_{N-1}-1}{1-n_{N-1}\varepsilon _{N-1}}(m_{N}+m_{PL})

 

m_{N-2}=\frac{n_{N-2}-1}{1-n_{N-2}\varepsilon _{N-2}}(m_{N-1}+m_{N}+m_{PL})                         (11.88)

.

.

.

m_{1}=\frac{n_{1}-1}{1-n_{1}\varepsilon _{1}}(m_{2}+m_{3}+ \cdots m_{PL})

 

\begin{matrix}m_{1} = 165 700  kg &m_{2} = 18 070 kg &m_{3} = 2477   kg\end{matrix}
Using Equations 11.89 and 11.90, the empty masses and propellant masses are found to be

m_{E_{i}} = ε_{i}m_{i}                     (11.89)

m_{p_{i}} = m_{i} − m_{E_{i}}            (11.90)

\begin{matrix}m_{E_{1}} = 16 570  kg &m_{E_{2}} = 2710  kg& m_{E_{3}} = 495.4   kg\end{matrix}
\begin{matrix}m_{p_{1}} = 149 100  kg& m_{p_{2}} = 15 360  kg& m_{p_{3}} = 1982  kg\end{matrix}

The payload ratios for each stage are
\lambda_{1}=\frac{m_{2}+m_{3}+m_{PL}}{m_{1}}=0.1542
\lambda_{2}=\frac{m_{3}+m_{PL}}{m_{2}}=0.4139
\lambda_{3}=\frac{m_{PL}}{m_{3}}=2.018
The total mass of the vehicle is
m_{0} = m_{1} + m_{2} + m_{3} + m_{PL} = 191 200  kg
and the overall payload fraction is
π_{PL} =\frac{m_{PL}}{m_{0}}=\frac{5000}{191200}=0.0262
Finally, let us check Equation 11.93,
ηc_{i}(\varepsilon_{i}n_{i} − 1)^{2} + 2\varepsilon_{i}n_{i} − 1 > 0, i = 1, … , N                                           (11.93)
η_{c_{1}}(\varepsilon_{1}n_{1} − 1)^{2} + 2\varepsilon_{1}n_{1} − 1 = 0.4541
η_{c_{2}}(\varepsilon_{2}n_{2} − 1)^{2} + 2\varepsilon_{2}n_{2} − 1= 0.3761
η_{c_{3}}(\varepsilon_{3}n_{3} − 1)^{2} + 2\varepsilon_{3}n_{3} − 1=0.2721
A positive number in every instance means we have indeed found a local minimum of the function in Equation 11.85.
h=\sum\limits_{i=1}^{N}[\ln (1-\varepsilon_{i})+\ln n_{i}-\ln (1-\varepsilon _{in_{i}})]-\eta\left(v_{bo}-\sum\limits_{i=1}^{N}c_{i}\ln n_{i}\right)                  (11.85)

Related Answered Questions