Question 3.4: Find the node voltages in the circuit of Fig. 3.12.

Find the node voltages in the circuit of Fig. 3.12.

Screenshot 2022-06-15 113243
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL to the two supernodes as in Fig. 3.13(a). At supernode 1-2,

i_{3}+10=i_{1}+i_{2}

Expressing this in terms of the node voltages,

\frac{v_{3}-v_{2}}{6}+10=\frac{v_{1}-v_{4}}{3}+\frac{v_{1}}{2}

or

5 v_{1}+v_{2}-v_{3}-2 v_{4}=60                (3.4.1)

At supernode 3-4,

i_{1}=i_{3}+i_{4}+i_{5} \quad \Longrightarrow \quad \frac{v_{1}-v_{4}}{3}=\frac{v_{3}-v_{2}}{6}+\frac{v_{4}}{1}+\frac{v_{3}}{4}

or

4 v_{1}+2 v_{2}-5 v_{3}-16 v_{4}=0                   (3.4.2)

We now apply KVL to the branches involving the voltage sources as shown in Fig. 3.13(b). For loop 1,

-v_{1}+20+v_{2}=0 \quad \Longrightarrow \quad v_{1}-v_{2}=20                     (3.4.3)

For loop 2,

-v_{3}+3 v_{x}+v_{4}=0

But v_{x}=v_{1}-v_{4} so that

3 v_{1}-v_{3}-2 v_{4}=0                   (3.4.4)

For loop 3,

v_{x}-3 v_{x}+6 i_{3}-20=0

But 6 i_{3}=v_{3}-v_{2} \text { and } v_{x}=v_{1}-v_{4} . Hence

-2 v_{1}-v_{2}+v_{3}+2 v_{4}=20                     (3.4.5)

We need four node voltages, v_{1}, \quad v_{2}, v_{3}, \text { and } v_{4}, and it requires only four out of the five Eqs. (3.4.1) to (3.4.5) to find them. Although the fifth equation is redundant, it can be used to check results. We can eliminate one node voltage so that we solve three simultaneous equations instead of four. From Eq. (3.4.3), v_{2}=v_{1}-20 . Substituting this into Eqs. (3.4.1) and (3.4.2), respectively, gives

6 v_{1}-v_{3}-2 v_{4}=80                     (3.4.6)

and

6 v_{1}-5 v_{3}-16 v_{4}=40                       (3.4.7)

Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as

\left[\begin{array}{rrr}3 & -1 & -2 \\6 & -1 & -2 \\6 & -5 & -16\end{array}\right]\left[\begin{array}{l}v_{1} \\v_{3} \\v_{4}\end{array}\right]=\left[\begin{array}{r}0 \\80 \\40\end{array}\right]

Using Cramer’s rule,

\Delta=\left|\begin{array}{rrr}3 & -1 & -2 \\6 & -1 & -2 \\6 & -5 & -16\end{array}\right|=-18, \quad \Delta_{1}=\left|\begin{array}{rrr}0 & -1 & -2 \\80 & -1 & -2 \\40 & -5 & -16\end{array}\right|=-480

\Delta_{3}=\left|\begin{array}{rrr}3 & 0 & -2 \\6 & 80 & -2 \\6 & 40 & -16\end{array}\right|=-3120, \quad \Delta_{4}=\left|\begin{array}{rrr}3 & -1 & 0 \\6 & -1 & 80 \\6 & -5 & 40\end{array}\right|=840

Thus, we arrive at the node voltages as

\begin{gathered}v_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-480}{-18}=26.667  V , \quad v_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-3120}{-18}=173.333  V \\v_{4}=\frac{\Delta_{4}}{\Delta}=\frac{840}{-18}=-46.667  V\end{gathered}

and v_{2}=v_{1}-20=6.667  V . We have not used Eq. (3.4.5); it can be used to cross check results.

Screenshot 2022-05-30 104833

Related Answered Questions

Question: 3.13

Verified Answer:

We can solve this problem in two ways. One way is ...
Question: 3.11

Verified Answer:

The schematic is shown in Fig. 3.35. (The schemati...
Question: 3.10

Verified Answer:

The first step is to draw the given circuit using ...
Question: 3.9

Verified Answer:

We have five meshes, so the resistance matrix is 5...
Question: 3.8

Verified Answer:

The circuit in Fig. 3.27 has four nonreference nod...
Question: 3.6

Verified Answer:

We apply KVL to the three meshes in turn. For mesh...
Question: 3.7

Verified Answer:

Note that meshes 1 and 2 form a supermesh since th...
Question: 3.5

Verified Answer:

We first obtain the mesh currents using KVL. For m...
Question: 3.1

Verified Answer:

Consider Fig. 3.3(b), where the circuit in Fig. 3....