Question 8.1: Find the stress at mid-height of the axially loaded bar show...

Find the stress at mid-height of the axially loaded bar shown in Figure 8.8a.

Take Young’s modulus of the bar material as E = 70 GPa.

8.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The bar is discretized using three elements as shown in Figure 8.8b.

Element stiffness matrices are calculated as follows (Equation 8.94):

[K^{(e)}]=\frac{AE}{l} \begin{bmatrix} 1&-1\\-1&1 \end{bmatrix} \quad\quad\quad\quad\quad 8.94\\ [K^{(1)}]=\frac{900\times 70,000}{70}\begin{bmatrix} 1&-1\\-1&1 \end{bmatrix}=\begin{bmatrix} 9&-9\\-9&9 \end{bmatrix} \times 10^5 \\ [K^{(2)}]=\frac{400\times 70,000}{70}\begin{bmatrix} 1&-1\\-1&1 \end{bmatrix} = \begin{bmatrix} 4&-4\\-4&4 \end{bmatrix}\times 10^5 \\ [K^{(2)}]=\frac{100\times 70,000}{70}\begin{bmatrix} 1&-1\\-1&1 \end{bmatrix} =\begin{bmatrix} 1&-1\\-1&1 \end{bmatrix} \times 10^5

The assembly of the element stiffness matrices, before imposition of boundary conditions, is done as follows:

[\bar{K} ]=\begin{bmatrix} 9&-9&0&0\\-9&9+4&-4&0\\0&-4&4+1&-1\\0&0&-1&1 \end{bmatrix} \times 10^5=\begin{bmatrix} 9&-9&0&0\\-9&13&-4&0\\0&-4&5&-1\\0&0&-1&1 \end{bmatrix} \times 10^5

Similarly, the nodal displacement vector and the nodal load vector, before the imposition of boundary conditions, are

\left\{\bar{\phi_i}\right\} =\begin{Bmatrix} \phi _1\\\phi _2\\\phi _3\\\phi _4 \end{Bmatrix}

and

\left\{\bar{P}\right\} =\begin{Bmatrix} R_1\\0\\0\\-100 \end{Bmatrix}

The equilibrium equations before the imposition of boundary conditions are given by

\begin{bmatrix} 9&-9&0&0\\-9&13&-4&0\\0&-4&5&-1\\0&0&-1&1 \end{bmatrix} \begin{Bmatrix} 0\\\phi _2\\\phi _3\\\phi _4 \end{Bmatrix} \times 10^5=\begin{Bmatrix} R_1\\0\\0\\-100 \end{Bmatrix}

The known boundary condition is \phi _1=0. Using Equations 8.66 through 8.68, the above equation is reframed as follows:

\begin{bmatrix} K&K_1\\K_2&K_3 \end{bmatrix} \begin{Bmatrix} \phi _i\\\phi _1 \end{Bmatrix} =\begin{Bmatrix} P_1\\P_2 \end{Bmatrix} \quad\quad\quad\quad\quad 8.66 \\ [K_2]\left\{\phi _i\right\} +[K_3]\left\{\phi _1\right\} =\left\{P_2\right\} \quad\quad\quad\quad\quad 8.68 \\ \begin{bmatrix} \begin{bmatrix}13&-4&0\\-4&5&-1\\0&-1&1 \end{bmatrix}&\begin{bmatrix} -9\\0\\0 \end{bmatrix} \\ \begin{bmatrix} -9&0&0 \end{bmatrix} & \begin{bmatrix} 9 \end{bmatrix} \end{bmatrix} \begin{Bmatrix} \begin{Bmatrix} \phi _2\\\phi _3\\\phi _4 \end{Bmatrix} \\ \begin{Bmatrix} 0 \end{Bmatrix} \end{Bmatrix} \times 10^5=\begin{Bmatrix} \begin{Bmatrix} 0\\0\\-100 \end{Bmatrix} \\ \begin{Bmatrix} R_1 \end{Bmatrix} \end{Bmatrix}

We see that the final global stiffness matrix, nodal displacement vector, and load vector are

[K]=\begin{bmatrix} 13&-4&0\\-4&5&-1\\0&-1&1 \end{bmatrix} \times 10^5 \\ \left\{\phi _i\right\} =\begin{Bmatrix} \phi _2\\\phi _3\\\phi _4 \end{Bmatrix} \\ \left\{P\right\} =\begin{Bmatrix} 0\\0\\-100 \end{Bmatrix}

Thus, the final equilibrium equations are given by

[K]=\begin{bmatrix} 13&-4&0\\-4&5&-1\\0&-1&1 \end{bmatrix} \begin{Bmatrix} \phi _2\\\phi _3\\\phi _4 \end{Bmatrix}\times 10^5=\begin{Bmatrix} 0\\0\\-100 \end{Bmatrix}

and

\begin{bmatrix} -9&0&0 \end{bmatrix} \begin{Bmatrix} \phi _2\\\phi _3\\\phi _4 \end{Bmatrix} \times 10^5= \left\{R_1\right\}

Solving the above equations, we get the nodal displacements and support reaction as follows:

\begin{Bmatrix} \phi _2\\\phi _3\\\phi _4 \end{Bmatrix} =-\begin{Bmatrix} 1.11\\3.61\\13.61 \end{Bmatrix} \times 10^{-4} \ mm

and

R_1=-100 \ N

For Element 2, matrix [B] is given by (Equation 8.92)

[B]=\begin{bmatrix} \frac{\delta}{\delta x} \end{bmatrix} [N]=\begin{bmatrix} \frac{\delta}{\delta x} \end{bmatrix}\begin{bmatrix} \frac{l-x}{l} &\frac{x}{l} \end{bmatrix} =\begin{bmatrix} -\frac{1}{l} & \frac{1}{l} \end{bmatrix} \quad\quad\quad\quad\quad 8.92 \\ [B]=\begin{bmatrix} -\frac{1}{l}&\frac{1}{l}\end{bmatrix} =\begin{bmatrix} -\frac{1}{70}&\frac{1}{70} \end{bmatrix}

And, the strain vector is given by

\left\{\varepsilon \right\} =[B]\left\{\phi _i^{(2)}\right\} =-\begin{bmatrix} -\frac{1}{70}&\frac{1}{70} \end{bmatrix} \begin{Bmatrix} 1.11\\3.61 \end{Bmatrix}\times 10^{-4}=-3.57\times 10^{-6}

The corresponding stress is given by

\left\{\sigma \right\} =[C]\left\{\varepsilon \right\} =-(70\times 10^3)\times (3.57\times 10^{-6})=-0.25 \ MPa