Question 3.7: For the circuit in Fig. 3.24, find i1 to i4 using mesh analy...
For the circuit in Fig. 3.24, find i_{1} \text { to } i_{4} using mesh analysis.

Learn more on how we answer questions.
Note that meshes 1 and 2 form a supermesh since they have an independent current source in common. Also, meshes 2 and 3 form another supermesh because they have a dependent current source in common. The two supermeshes intersect and form a larger supermesh as shown. Applying KVL to the larger supermesh,
2 i_{1}+4 i_{3}+8\left(i_{3}-i_{4}\right)+6 i_{2}=0
or
i_{1}+3 i_{2}+6 i_{3}-4 i_{4}=0 (3.7.1)
For the independent current source, we apply KCL to node P:
i_{2}=i_{1}+5 (3.7.2)
For the dependent current source, we apply KCL to node Q:
i_{2}=i_{3}+3 i_{o}
But i_{o}=-i_{4}, hence,
i_{2}=i_{3}-3 i_{4} (3.7.3)
Applying KVL in mesh 4,
2 i_{4}+8\left(i_{4}-i_{3}\right)+10=0
or
5 i_{4}-4 i_{3}=-5 (3.7.4)
From Eqs. (3.7.1) to (3.7.4),
i_{1}=-7.5 A , \quad i_{2}=-2.5 A , \quad i_{3}=3.93 A , \quad i_{4}=2.143 A