Question 14.4: Show that the states of a p electron, Y11, Y10, and Y1−1, tr...

Show that the states of a p electron, Y_{11}, Y_{10}, and Y_{1−1}, transform according to a three-dimensional representation of the rotation group R(3).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

According to Eq. (14.52), the product of the rotation operator pδ(\phi _{z}) and a state Y_{l{m_l}} is

p_{z}(δ\phi _{z}) = 1 − iδ\phi _{z}l_{z}.               (14.52)

p_{z}(δ\phi _{z})Y_{l{m_l}} = (1 − i δ\phi _{z}l_{z})Y_{l{m_l}} = (1 − i δ\phi _{z}m_{l})Y_{l{m_l}}

The product of  p_{z} (δ\phi _{z}) or  l_{z} times a spherical harmonic gives a constant times a spherical harmonic with the same value l and the same value of  m_{l}.

According to Eq. (14.53), the product of  p_{x} (δ\phi _{x} ) times a spherical harmonic  Y_{l{m_l}} is  (1 − i δ \phi _{x} l_{x})Y_{l{m_l}} . Then according to Eq. (14.60) and Eqs. (14.58) and (14.59), we get spherical harmonics with the same value of l and one value greater or one value less of the azimuthal quantum number m. The same can be said of the product of p_{y} (δ\phi_{y} ) times a spherical harmonic.

p_{x} (δ\phi_{x} ) = 1 − iδ\phi_{x} l_{x} ,                                                                  (14.53)

l_{-}Y_{l{m_l}} =  \sqrt{l(l + 1) − m_{l}(m_{l} + 1)}Y_{l_{ml}-1}                                  (14.58)

l_{+}Y_{l{m_l}} =  \sqrt{l(l + 1) − m_{l}(m_{l} + 1)}Y_{l_{ml}+1}                                   (14.59)

l_{x} = \frac{1} {2} (l_{+} + l_{−}).                                                            (14.60)

In each case, an infinitesimal rotation of the spherical harmonics of a p-electron gives linear combinations of p-electron states

Related Answered Questions