Question 15.2: Using the atomic masses of the 1 1H and 4 2H e isotopes give...

Using the atomic masses of the ^{1}_{ 1}H and  ^{4}_{ 2}H e isotopes given in Table 15.1 and the mass of the neutron given in Appendix A, calculate the binding energy of the ^{4}_{ 2}H e nucleus.

TABLE 15.1 Some of the properties of a number of light isotopes.
Name Z A Atomic mass (u) I Natural abundance
H 1 1 1.007825 1/2 99.989%
2 2.014102 1 0.011%
He 2 3 3.016029 1/2 1.37 × 10^{−4}%
4 4.002603 0 99.99986%
Li 3 6 6.015122 1 7.59%
7 7.016004 3/2 92.41%
Be 4 9 9.012182 3/2 100%
B 5 10 10.012937 3 19.9%
11 11.009306 3/2 80.1%
C 6 12 12.000000 0 98.93%
13 13.003355 1/2 1.07%
N 7 14 14.003074 1 99.632%
15 15.000109 1/2 0.368%
O 8 16 15.994915 0 99.757%
17 16.999132 5/2 0.038%
18 17.999160 0 0.205%
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The reaction in which two hydrogen atoms combine with two neutrons to form the ^{4}_{ 2}H e atom is

2 ^{1}_{1}H+2n\rightarrow ^{4}_{2}He.

The terms on each side of this equation contain two protons, two neutrons, and two electrons. To be concrete, we write the mass under each term in the above reaction to obtain

\begin{matrix}\begin{matrix}2 ^{1}_{1}H & +\\ 2(1.007825) u \end{matrix} &\begin{matrix} 2n &\rightarrow \\2(1.008665) u \end{matrix} & \begin{matrix} ^{4}_{2}He\\ 4.002602u \end{matrix} \end{matrix}

The mass lost when two ^{1}_{ 1}H atoms combine with two neutrons to form the ^{4}_{ 2}H e  isotope is

\Delta m = 2(1.007825) u + 2(1.008665) u − 4.002602 u = 0.030378 u.

The binding energy of the helium nucleus is obtained by multiplying this mass loss by 931.5 MeV. We obtain
B(2, 2) = 28.297 MeV.

 

Appendix A
Constants and conversion factors
Constants
Speed of light c 2.99792458 × 10^{8} m/s
Charge of electron e 1.6021773 × 10^{−19} C
Plank’s constant h 6.626076 × 10^{−34} J s
4.135670 × 10^{−15}  eV s
\hbar=h/2π 1.054573 × 10^{−34}  J s
6.582122 × 10^{−16}  eV s
hc 1239.8424 eV nm
1239.8424 MeV fm
Hydrogen ionization energy 13.605698 eV
Rydberg constant 1.0972 × 10^{5} cm^{−1}
Bohr radius  a_{0} = (4π \epsilon _{0})/(me²) 5.2917725 × 10^{−11} m
Bohr magneton μ_{B} 9.2740154 × 10^{−24}  J/T
5.7883826 × 10^{−5}  eV/T
Nuclear magneton μ_{N} 5.0507865 × 10^{−27}  J/T
3.1524517 × 10^{−8}  eV/T
Fine structure constant α = e^{2}/(4π\epsilon _{0} c  \hbar) 1/137.035989
e^{2}/4π\epsilon _{0} 1.439965 eV nm
Boltzmann constant k 1.38066 × 10^{−23}  J/K
8.6174 × 10^{−5}  eV/K
Avogadro’s constant N_{A} 6.022137 × 10^{23}  mole
Stefan-Boltzmann constant σ 5.6705 × 10^{−8}  W/m² K^{4}
Particle masses
kg u MeV/c²
Electron  9.1093897 × 10^{−31}  5.485798 × 10^{−4} 0.5109991
Proton  1.6726231 × 10^{−27} 1.00727647 938.2723
Neutron  1.674955 × 10^{−27} 1.008664924 939.5656
Deuteron  3.343586 × 10^{−27} 2.013553 1875.6134
Conversion factors
1 eV  1.6021773 × 10^{−19}   J
1 u 931.4943  MeV/c²
 1.6605402 × 10^{−27}   kg
1 atomic unit 27.2114  eV

Related Answered Questions

Question: 15.9

Verified Answer:

Substituting the values, E_{i} = 10.02[/lat...
Question: 15.8

Verified Answer:

The Q-value of the β-decay can be calculated using...
Question: 15.7

Verified Answer:

As can be seen in Fig. 15.9, the energy of the exc...
Question: 15.5

Verified Answer:

Using the masses of the ^{238}_{ 92}U,^{234...
Question: 15.1

Verified Answer:

Using Eq. (13.14) of Chapter 13 and the de Broglie...