Question 4.15: Problem: Air is heated from 300 to 500 K. Find the change in...

Problem: Air is heated from 300 to 500 K. Find the change in specific enthalpy using (a) c_p evaluated at 25 °C, (b) c_p evaluated at T_{avg} , (c) a function c_p (T), (d) ideal gas tables.

Find: Change in specific enthalpy ∆h in four ways.

Known: Initial temperature T_1   = 300 K, final temperature T_2 = 500 K.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) For air at 25 °C, c_p = 1.004 kJ / kgK (Appendix 1):

\Delta h=c_p(T_2-T_1)=1.004 \ kJ/kgK \times (500 \ K-300 \ K)=200.800 \ kJ/kg

(b) The average temperature during the heating is T_{avg}=\frac{(T_2+T_1)}{2} =\frac{500 \ K + 300 \ K}{2} =400 \ K.

For air at 400 K,  c_p = 1.013 kJ / kgK (Appendix 4):

\Delta h=c_p(T_2-T_1)=1.013 \ kJ/kgK (500 \ K-300 \ K)=202.600 \ kJ/kg

(c) From Appendix 5, for air

\overline{c}_p =Mc_p=28.11 + 0.1967 \times 10^{-2} \ T+0.4802 \times 10^{-5} \ T^2-1.966 \times 10^{-9} \ T^3:

\Delta \overline{h} =\overline{h} _2-\overline{h} _1=\int\limits_{T_1}^{T_2}{} \overline{c} _p(T)dT=\int\limits_{300 \ K}^{500 \ K}{} (28.11 + 0.1967 \times 10^{-2} \ T + 0.4802 \times 10^{-5} \ T^2-1.966 \times 10^{-9} \ T^3)dT

\Delta \overline{h} =\left[28.11 \ T + 0.9835 \times 10^{-3} \ T^2 + 0.1601 \times 10^{-5} T^3-0.4915 \times 10^{-9} \ T^4\right]_{300 \ K}^{500 \ K} \\ =5933.58 \ kJ/kmolK

\Delta h = \frac{\Delta\overline{h} }{M} =\frac{5933.58 \ kJ/kmolK}{28.97 \ kg/kmol} =204.818 \ kJ/kgK

(d) From Appendix 7, h(300 K) = 300.19 kJ / kgK and h(500 K) = 503.02 kJ / kgK:

∆h = h ( 500 K ) − h( 300 K )= 503.02 kJ / kgK – 300.19 kJ / kgK = 202.830 kJ / kgK

Answer: The changes in specific enthalpy are: (a) 200.8 kJ / kg, (b) 202.6 kJ / kg, (c) 204.8 kJ / kg, (d) 202.8 kJ / kg. The difference in the specific enthalpy change calculated using these different methods is small. Often, assuming constant specific heat is a reasonable assumption. If ideal gas tables are available they are the easiest way of calculating enthalpy changes.

Related Answered Questions