Question : (a) If the switch in Fig. 7.109 has been open for a long tim...

(a) If the switch in Fig. 7.109 has been open for a long time and is closed at t = 0, find v_{ o} (t).

(b) Suppose that the switch has been closed for a long time and is opened at t = 0. Find v_{ o} (t).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)   \mathrm{v}_{\mathrm{o}}(\mathrm{t})=\mathrm{v}_{\mathrm{o}}(\infty)+\left[\mathrm{v}_{\mathrm{o}}(0)-\mathrm{v}_{\mathrm{o}}(\infty)\right] \mathrm{e}^{-\mathrm{t} / \tau}

\mathrm{v}_{\mathrm{o}}(0)=0, \quad \mathrm{v}_{\mathrm{o}}(\infty)=\frac{4}{4+2}(12)=8

 

\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}_{\mathrm{eq}}, \quad \mathrm{R}_{\mathrm{eq}}=2 \| 4=\frac{4}{3}

 

\tau=\frac{4}{3}(3)=4

 

\mathrm{v}_{\mathrm{o}}(\mathrm{t})=8-8 \mathrm{e}^{-\mathrm{t} / 4}

 

\mathrm{v}_{\mathrm{o}}(\mathrm{t})={8\left(1-\mathrm{e}^{-0.25 \mathrm{t}}\right) \mathrm{V}}

 

(b)   For this case, \mathrm{v}_{\mathrm{o}}(\infty)=0 so that

\mathrm{v}_{\mathrm{o}}(\mathrm{t})=\mathrm{v}_{\mathrm{o}}(0) \mathrm{e}^{-\mathrm{t} / \mathrm{t}}

 

\mathrm{v}_{\mathrm{o}}(0)=\frac{4}{4+2}(12)=8, \quad \tau=\mathrm{RC}=(4)(3)=12

 

\mathrm{v}_{\mathrm{o}}(\mathrm{t})=\mathbf{8} \mathrm{e}^{-\mathrm{t} / 12} \mathrm{V}