Question 7.13: Problem: Calculate the pressure of nitrogen that has a speci...

Problem: Calculate the pressure of nitrogen that has a specific volume ν = 0.025 m³ / kg and a temperature of 252 K using (a) the ideal gas equation and (b) the van der Waals equation of state.

Find: Pressure of nitrogen P.

Known: Specific volume ν = 0.025 m³ / kg, temperature T = 252 K.

Governing Equations:

Ideal gas equation                    P\bar{ν}=R_uT

van der Waals equation                    \left\lgroup P+\frac{a}{\bar{\nu }^2}\right\rgroup (\bar{\nu}-b)=R_uT

Properties: For nitrogen, the critical temperature T_C = 126.2 K (Table 7.1), critical pressure P_C = 3.39 MPa (Table 7.1) and molar mass M = 28.013 kg / kmol (Appendix 1), van der Waals constants a = 137 kPa m^6\ / kmol^2 and b = 0.0386 m³ / kmol (Table 7.5).

Table 7.1 Critical temperature (T_c), pressure (P_c) and volume (v_c) of common substances.
Substance Formula Temperature, T_c (K) Pressure, P_c (MPa) Volume, v̄_c (m^3 /kmol)
Air 132.5 3.77 0.0883
Ammonia NH_3 405.5 11.28 0.0724
Argon Ar 151 4.86 0.0749
Carbon dioxide CO_2 304.2 7.39 0.0943
Helium He 5.3 0.23 0.0578
Methane CH_4 191.1 4.64 0.0993
Nitrogen N_2 126.2 3.39 0.0899
Oxygen O_2 154.8 5.08 0.078
Water H_2O 647.3 22.09 0.0568
Table 7.5 Values of van der Waals constants for common gases.
Substance Formula a (kPa m^6 / kmol^2 ) b (m^3 /kmol)
Air 136 0.0365
Carbon dioxide CO_2 364.7 0.0428
Nitrogen N_2 137 0.0386
Hydrogen H_2 24.5 0.0263
Water H_2O 554 0.0305
Oxygen O_2 136.9 0.0319
Helium He 3.47 0.0238
Argon Ar 135 0.0320
Methane CH_4 229.3 0.048
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The molar specific volume of nitrogen is

\bar{\nu}=\nu M=0.025 \ m^3/kg \times 28.013 \ kg/kmol=0.700 \ 33 \ m^3/kmol.

(a) Ideal gas equation ,

P=\frac{R_uT}{\bar{\nu}}=\frac{8.314 \ kJ /kmolK \times 252 \ K}{0.700 \ 33 \ m^3/kmol}=2991.6 \ kPa = 2.99 \ MPa.

(b) van der Waals equation,

P=\frac{R_uT}{(\bar{\nu}-b)}-\left\lgroup \frac{a}{\bar{\nu}^2} \right\rgroup , \\ P= \frac{8.314 \times 10^3 J/kmolK \times 252 \ K}{(0.700 \ 33 \ m^3/kmol  –  0.0386 \ m^3/kmol)}-\left\lgroup \frac{137 \times 10^3 Pam^6/kmol^2}{(0.700 \ 33 \ m^3/kmol)^2}\right\rgroup \ , \\ P=2.8868 \ MPa.

Answer: The pressure calculated using the (a) ideal gas equation is 2.99 MPa, (b) van der Waals equation is 2.89 MPa.

Related Answered Questions