Question 6.13: Problem: Argon enters an adiabatic nozzle at 4 bar and 850 °...

Problem: Argon enters an adiabatic nozzle at 4 bar and 850 °C and exits at 1 bar. If the isentropic efficiency of the nozzle is 90%, find the exit velocity and temperature of the gas.

Find: Exit velocity \pmb{V} _2 and temperature T_2 of argon.

Known: Inlet temperature T_1 = 850 °C = 1123.15 K, inlet pressure P_1 = 4 bar, exit pressure P_2 = 1 bar, isentropic efficiency η_n = 0.9.

Assumptions: Argon is an ideal gas with constant specific heats.

Governing Equations:

Isentropic nozzle efficiency                                  \eta _{\text{nozzle}}=\frac{\pmb{V}_2^2}{\pmb{V}_{2s}^2}

Nozzle exit velocity                                                \pmb{V}_2=\sqrt{2(h_2 – h_1)} =\sqrt{2c_p(T_2 – T_1)}

Isentropic process (ideal gas,                              \frac{T_2}{T_1} =\left\lgroup\frac{P_2}{P_1} \right\rgroup ^{(\gamma -1)/\gamma }
constant specific heats)

Properties: Argon at 25 °C (approximation) has specific heat c_p = 0.520 kJ / kgK (Appendix 1), specific heat ratio of argon at 25 °C (approximation) \gamma = 1.667 (Appendix 1).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assuming isentropic flow, the exit temperature is

T_{2s}=T_1\left\lgroup\frac{P_2}{P_1} \right\rgroup ^{(\gamma -1)/\gamma }= 1123 \ K \left\lgroup\frac{1 \ bar}{4 \ bar} \right\rgroup ^{\frac{1.667-1}{1.667} }=644.973 \ K

The exit velocity assuming isentropic flow is

\pmb{V}_{2s}=\sqrt{2c_p(T_1 -T_2)} =\sqrt{2\times 0.520 \times 10^3 \ kJ/kg (1123.15 \ K -644.973 \ K) } =705.198 \ m/s.

The real velocity is then

\pmb{V}_2=\sqrt{\eta _{\text{nozzle}}\pmb{V}_{2s}^2} =\sqrt{0.9(705.198 \ m/s)^2} =669.009 \ m/s.

Then the real outlet temperature can be calculated:

\pmb{V}_2=\sqrt{2c_p(T_1-T_2)}

669.009 \ m/s=\sqrt{2 \times 0.520 \times 10^3 \ kJ/kg (1123.15 \ K-T_2)}

T_2=692.791 \ K

Answer: The exit velocity is 669.0 m / s and the exit temperature is 693 K.

Related Answered Questions