Question 6.16: Problem: Air enters a gas turbine at 1100 K and 800 kPa with...

Problem: Air enters a gas turbine at 1100 K and 800 kPa with a velocity of 80 m / s. Determine the exergy of the air at the inlet to the turbine. Assume the atmosphere is at 300 K and 100 kPa.

Find: Flow exergy ψ of the air at the turbine inlet.

Known: Air pressure P = 800 kPa, air temperature T = 1100 K, air velocity V = 80 m / s, atmospheric pressure P_o = 100 kPa, atmospheric temperature T_o = 300 K.

Assumptions: Air is an ideal gas, negligible contribution from potential energy.

Properties: Air has gas constant R = 0.2870 kJ / kgK (Appendix 1), specific enthalpy at 1100 K h(1100 K) = 1161.07 kJ / kg (Appendix 7), specific enthalpy h(300 K) = 300.19 kJ / kg (Appendix 7), specific entropy sº (1100 K) = 3.07732 kJ / kgK (Appendix 7), specific entropy sº (300 K) = 1.70203 kJ / kgK (Appendix 7).

Governing equations:

Flow exergy per unit mass                          \psi =(h-h_o) – T_o (s-s_o) + \frac{\pmb{V}^2}{2} +\underbrace{gz}_{=0} 

Entropy change (ideal gas)                        \Delta s =s^\circ (T_2)-s^\circ (T_1)-R \ln \frac{P_s}{P_1} 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Specific enthalpy contribution:

h-h_o =h(1100 \ K) – h(300 \ K)=1161.07 \ kJ/kg  –  300.19 \ kJ/kg =860.880 \ kJ/kg.

Specific entropy contribution: s – s_o =s^\circ (1100 \ K)-s^\circ (300 \ K)-R \ln \frac{P}{P_o}

=3.07732 \ kJ/kgK  –  1.70203 \ kJ/kgK -0.2870 \ kJ/kgK \times \ln \frac{800 \ kPa}{100 \ kPa} =0.778490 \ kJ/kgK

Total flow exergy:

\psi = 860.880 \ kJ/kg  –  300 \ K \times 0.778490 \ kJ/kgK + \frac{(80 \ m/s)^2}{2 \times 1000 \ J/kJ} =630.533 \ kJ/kg.

Answer: The flow exergy of the fluid at the turbine inlet is 630.5 kJ / kg.

Related Answered Questions