Question 3.17: A stepped shaft consisting of solid circular segments (D1 = ...

A stepped shaft consisting of solid circular segments (D_{1} = 44 mm and D_{2} = 53 mm, see Fig. 3-60) has a fillet of radius R = 5 mm.
(a) Find the maximum permissible torque T_{\max }, assuming that the allowable shear stress at the stress concentration is 63 MPa.
(b) If the shaft is to be replaced with a shaft with allowable shear stress of 86 MPa, D_{2} = 53 mm with a full quarter-circular fillet, carrying a torque of T = 960 N m, find the smallest acceptable value of diameter D_{1}.

3.60
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Maximum permissible torque. If we compute the ratio of the shaft diameters (D_{2}/D_{1} = 1.2) and the ratio of the fillet radius R to diameter D_{1} (R/D_{1} = 0.114), we can find the stress concentration factor K to be approximately 1.3 from Fig. 3-59 (repeated here). Then, equating the maxi-mum shear stress in the smaller shaft to the allowable shear stress \tau_{a}, we ge

\tau_{\max }=K\left(\frac{16 T}{\pi D_{1}^{3}}\right)=\tau_{a}  (a)

Solving Eq. (a) for T_{\max }, we get

T_{\max }=\tau_{a}\left(\frac{\pi D_{1}^{3}}{16 K}\right)  (b)

Substituting numerical values gives

T_{\max }=(63 \mathrm{MPa})\left[\frac{\pi(44 \mathrm{~mm})^{3}}{16(1.3)}\right]=811 \mathrm{~N} \cdot \mathrm{m}

(b) Smallest acceptable value of diameter D_{1}. In the shaft redesign, a full quarter-circular fillet is being used so

D_{2}=D_{1}+2 R \quad \text { or } \quad R=\frac{D_{2}-D_{1}}{2}=\frac{53 \mathrm{~mm}-D_{1}}{2}=26.5 \mathrm{~mm}-\frac{D_{1}}{2}    (c)

Next, solve Eq. (a) for diameter D_{1} in terms of the unknown stress con-centration factor K

D_{1}=\left[K\left(\frac{16 T}{\pi \tau_{a}}\right)\right]^{\frac{1}{3}}=\left[K\left[\frac{16(960 \mathrm{~N} \cdot \mathrm{m})}{\pi(86 \mathrm{MPa})}\right]\right]^{\frac{1}{3}}=\left(\frac{7680 K \mathrm{~N} \cdot \mathrm{m}}{43 \pi \mathrm{MPa}}\right)^{\frac{1}{3}}   (d)

Solving Eqs. (c) and (d) using trial and error and using Fig. 3-59 to obtain K, we have the following results:
Trial #1.

D_{1 a}=38 \mathrm{~mm} \quad R=26.5 \mathrm{~mm}-\frac{D_{1 a}}{2}=7.5 \mathrm{~mm} \quad \frac{R}{D_{1 a}}=0.197

From Fig. 3-59: K = 1.24:

D_{1 b}=\left(\frac{7680 K \mathrm{~N} \cdot \mathrm{m}}{43 \pi \mathrm{MPa}}\right)^{\frac{1}{3}}=41.31 \mathrm{~mm}

Trial #2.

D_{1 a}=41.3 \mathrm{~mm} \quad R=26.5 \mathrm{~mm}-\frac{D_{1 a}}{2}=5.85 \mathrm{~mm} \quad \frac{R}{D_{1 a}}=0.142

From Fig. 3-59: K = 1.26:

D_{1 b}=\left(\frac{7680 K \mathrm{~N} \cdot \mathrm{m}}{43 \pi \mathrm{MPa}}\right)^{\frac{1}{3}}=41.53 \mathrm{~mm}

Trial #3.

D_{1 a}=41.6 \mathrm{~mm} \quad R=26.5 \mathrm{~mm}-\frac{D_{1 a}}{2}=5.7 \mathrm{~mm} \quad \frac{R}{D_{1 a}}=0.137

From Fig. 3-59: K = 1.265:

D_{1 b}=\left(\frac{7680 K \mathrm{~N} \cdot \mathrm{m}}{43 \pi \mathrm{MPa}}\right)^{\frac{1}{3}}=41.59 \mathrm{~mm}

Use D_{1} = 41.6 mm. Check the maximum shear stress:

\tau_{\max }=K\left(\frac{16 T}{\pi D_{1}^{3}}\right)=(1.265)\left[\frac{16(960 \mathrm{~N} \cdot \mathrm{m})}{\pi(41.6 \mathrm{~mm})^{3}}\right]=86 \mathrm{MPa}

A stepped shaft with D_{2} = 53 mm, D_{1} = 41.6 mm, and a full quarter-cir-cular fillet of radius R = 5.7 mm will carry the required torque T without exceeding the allowable shear stress in the fillet region.

3.59

Related Answered Questions