Question 2.33: An inductor, a variable capacitor, and a resistor are connec...

An inductor, a variable capacitor, and a resistor are connected in series across a constant voltage, 100 Hz power supply. When the capacitor value is fixed at 100 μF, the current reaches its maximum value. Current gets reduced to half its maximum value when the capacitor value is 200 μF.
Calculate the values of circuit parameters and the Q-factor of the circuit.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let resonant frequency be f_{0}.

At resonance,                                      X_{L} =X_{C}

2πf_{0}L=\frac{1}{2πf_{0}C}

or,                                                          LC =\frac{1}{(2πf_{0})^{2}}

or,                                                            L=\frac{1}{(2πf_{0})^{2}C}

Substituting values,

L=\frac{1}{(6.28 ×100)^{2} × 100  ×  10^{-6}}

= 25.3×10^{–3}  H

Since X_{L} = X_{C}, the value of impedance at = R.

Maximum value of current,            I_{m}=I_{0}=\frac{V}{R}  A

At a frequency of 100 Hz, C = 200 ×10^{–6} F, current is reduced to half, i.e., impedance becomes equal to twice its value at resonance, i.e., equals 2R.

Impedance,                       Z=\sqrt{R^{2}  +  (X_{L}  –  X_{C})^{2}}

Current,                               I=\frac{V}{Z}=\frac{V}{\sqrt{R^{2}+(X_{L}  –  X_{C})^{2}}}

According to the problem

I=\frac{I_{m}}{2}

or,                                           \frac{V}{\sqrt{R^{2}+(X_{L}  –  X_{C})^{2}}} = \frac{I_{m}}{2}=\frac{V}{2R}

or,                                          \sqrt{R^{2}+(X_{L}  –  X_{C})^{2}}=2R

or,                                           (X_{L}  –  X_{C})^{2}=3R^{2}

or,                                         \sqrt {3}  R = X_{L}  –  X_{C}

X_{L} = 2πf_{0}L = 628 × 25.3 × 10^{-3} = 15.88  Ω

X_{C}= \frac{1}{2πf_{0}C}= \frac{1}{6.28  ×  200  ×  10^{-6}}=7.96  Ω

R= \frac{X_{L}  –  X_{C}}{ \sqrt {3}}=\frac{15.88  –  7.96}{1.732}=4.57  Ω

Related Answered Questions