Question 4.1.9: Let T: R³→ R³ be a linear operator and B a basis for R³ give...

Let T: R³→ R³ be a linear operator and B a basis for R³ given by

B= \left\{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\}

If

T\left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}   \quad   T\left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\right) = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}    \quad  T\left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix} 

find

T\left(\begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}\right)

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since B is a basis for R³, there are (unique) scalars c_{1}, c_{2},  and   c_{3} such that

c_{1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} +c_{2}\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} +  c_{3} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}

Solving this equation, we obtain c_{1} = −1, c_{2} = 1,   and  c_{3} = 2. Hence

T\left(\begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}\right) = T \left(-1\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} +\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right)

By the linearity of T, we have

T\left(\begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}\right) = (-1) T\left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}\right) + T\left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\right)+2 T\left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\right)

= – \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} +\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}+2 \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}

= \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}

Related Answered Questions

Question: 4.3.4

Verified Answer:

To use the method given in the proof of Theorem 11...
Question: 4.1.6

Verified Answer:

By Theorem 6 of Sec. 1.3, we have T (A+ B) ...
Question: 4.1.5

Verified Answer:

Since T (0) = T\left(\begin{bmatrix} 0 \\ 0...