Question 4.3.4: Find an explicit isomorphism from P2 onto the vector space o...
Find an explicit isomorphism from P_{2} onto the vector space of 2 × 2 symmetric matrices S_{2×2}.
Learn more on how we answer questions.
To use the method given in the proof of Theorem 11, first let
B_{1} = \left\{1, x, x²\right\} and B_{2} = \left\{\begin{bmatrix}0 &0 \\ 0&1 \end{bmatrix}, \begin{bmatrix}0 &1 \\ 1&0 \end{bmatrix}, \begin{bmatrix}1 &0 \\ 0&0 \end{bmatrix} \right\}
be ordered bases for P_{2} and S_{2×2}, respectively. Let T_{1} and T_{2} be the respective coordinate maps from P_{2} and S_{2×2} into R³. Then
T_{1}(ax² + bx + c) = \begin{bmatrix} c \\ b \\ a \end{bmatrix} and T_{2} \left(\begin{bmatrix} a &b\\ b&c\end{bmatrix} \right) = \begin{bmatrix} c \\ b \\ a \end{bmatrix}
Observe that T^{-1}_{2} : R³→ S_{2×2} maps the vector
\begin{bmatrix} c \\ b \\ a \end{bmatrix}to the symmetric matrix \left(\begin{bmatrix} a &b\\ b&c\end{bmatrix} \right)
Thus, the desired isomorphism is given by \left(T^{-1}_{2} \circ T_{1} \right) : P_{2}→S_{2×2} with
\left(T^{-1}_{2} \circ T_{1} \right)(ax² + bx + c) = \begin{bmatrix} a &b\\ b&c\end{bmatrix}
For example,
\left(T^{-1}_{2} \circ T_{1} \right) (x² − x + 2) = T^{-1}_{2} (T_{1} (x² − x + 2))= T^{-1}_{2}\left(\begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1& -1\\ -1&2 \end{bmatrix}