Question 4.3.4: Find an explicit isomorphism from P2 onto the vector space o...

Find an explicit isomorphism from P_{2} onto the vector space of 2 × 2 symmetric matrices S_{2×2}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To use the method given in the proof of Theorem 11, first let

B_{1} = \left\{1, x, x²\right\}      and      B_{2} = \left\{\begin{bmatrix}0 &0 \\ 0&1 \end{bmatrix}, \begin{bmatrix}0 &1 \\ 1&0 \end{bmatrix}, \begin{bmatrix}1 &0 \\ 0&0 \end{bmatrix} \right\}

be ordered bases for P_{2}  and  S_{2×2}, respectively. Let T_{1}  and  T_{2} be the respective coordinate maps from P_{2}  and  S_{2×2} into R³. Then

T_{1}(ax² + bx + c) = \begin{bmatrix} c \\ b  \\ a \end{bmatrix}     and     T_{2} \left(\begin{bmatrix} a &b\\ b&c\end{bmatrix} \right) = \begin{bmatrix} c \\ b  \\ a \end{bmatrix}

Observe that T^{-1}_{2} : R³→ S_{2×2} maps the vector

\begin{bmatrix} c \\ b  \\ a \end{bmatrix}to the symmetric matrix  \left(\begin{bmatrix} a &b\\ b&c\end{bmatrix} \right)

Thus, the desired isomorphism is given by \left(T^{-1}_{2} \circ T_{1} \right) : P_{2}→S_{2×2} with

\left(T^{-1}_{2} \circ T_{1} \right)(ax² + bx + c) = \begin{bmatrix} a &b\\ b&c\end{bmatrix}

For example,

\left(T^{-1}_{2} \circ T_{1} \right) (x² − x + 2) = T^{-1}_{2} (T_{1} (x² − x + 2))= T^{-1}_{2}\left(\begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1& -1\\ -1&2 \end{bmatrix}

Related Answered Questions

Question: 4.1.6

Verified Answer:

By Theorem 6 of Sec. 1.3, we have T (A+ B) ...
Question: 4.1.5

Verified Answer:

Since T (0) = T\left(\begin{bmatrix} 0 \\ 0...