Question 10.5.2: A lumped mass structure of n degrees of freedom is undergoin...

A lumped mass structure of n degrees of freedom is undergoing undamped free vibration. Determine the actual period of vibration of the ith mass. Are the actual periods of vibration of the n masses equal to one another?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The solution to the uncoupled equations of motion is (Eqns 10.5-30):

q_1=A_1\sin \omega _1t+B_1\cos \omega _1t,  or  C_1\sin (\omega _1t+\alpha _1),  0r  D_1\cos (\omega _1t+\beta _1)
q_2=A_2\sin \omega _2t+B_2\cos \omega _2t,  or  C_2\sin (\omega _2t+\alpha _2),  0r  D_2\cos (\omega _2t+\beta _2)
\vdots
q_n=A_n\sin \omega _nt+B_n\cos \omega _nt,  or  C_n\sin (\omega _nt+\alpha _n),  0r  D_n\cos (\omega _nt+\beta _n)  (10.5-30)

\left[\begin{matrix} q_1 \\ q_2 \\ \vdots \\ q_i \\ \vdots \\ q_n \end{matrix} \right]= \left[\begin{matrix} C_1\sin \left(\omega_1t+\alpha _1\right) \\ C_2\sin \left(\omega_2t+\alpha _2\right) \\ \vdots \\ C_i\sin \left(\omega_it+\alpha _i\right) \\ \vdots \\ C_n\sin \left(\omega_nt+\alpha _n\right) \end{matrix} \right]               (10.5-41)

Using the coordinate transformation in Eqn 10.5-32,

x=Zq                 (10.5-32)

the actual displacements are:

\left[\begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{matrix} \right]=\left[\begin{matrix} _1z_1 & _2z_1 & \ldots & _nz_1 \\ _1z_2 & _2z_2 \\ \vdots \\ _1z_i & _2z_i \\ \vdots \\ _1z_n & & & _nz_n \end{matrix} \right]\left[\begin{matrix} q_1 \\ q_2 \\ \vdots \\ q_i \\ \\ q_n \end{matrix} \right]

That is,

x_i= \ _1z_iC_1\sin \left(\omega _1t+\alpha _1\right)+ \ _2z_iC_2\sin \left(\omega _2t+\alpha _2\right)+\cdot \cdot \cdot + \ _iz_iC_i\sin \left(\omega _it+\alpha _i\right)+\cdot \cdot \cdot + \ _nz_iC_n\sin \left(\omega _nt+\alpha _n\right)     (10.5-42)

where \omega_1 is the natural circular frequency corresponding to the first normal mode shape, \omega_2 that corresponding to the second normal mode shape, and so on.
In Eqn 10.5-42 the period of the first term on the right-hand side is 2\pi /\omega_1, that of the second term is 2\pi /\omega_2 , and so on. Hence the actual period of the displacement x_i must be the least common multiple of all the periods on the right-hand side. That is,

T_i (actual) = LCM of \frac{2\pi }{\omega_1}, \frac{2\pi }{\omega_2}, \frac{2\pi }{\omega_3}, . . . , \frac{2\pi }{\omega_n}      (10.5-43)

provided none of the coefficients _1z_iC_1, _2z_iC_2, . . . , _nz_iC_n are zero. If any of these coefficients is zero, say _rz_iC_r=0, then the term 2\pi /\omega_r will be omitted in determining the LCM. Thus if none of the n \times n quantities,

\begin{matrix} _1z_1C_1 & _2z_1C_2 & _3z_1C_3 & \ldots & _nz_1C_n \\ _2z_1C_1 & _2z_2C_2 & _3z_2C_3 & \ldots & _nz_2C_n \\ \vdots \\ _nz_1C_1 & _nz_2C_2 & _nz_3C_3 & \ldots & _nz_nC_n \end{matrix}

are zero, then the actual periods of vibration of all the masses must be the same, i.e.

T_1 \ (actual) = T_2 \ (actual) = \ ··· = T_n \ (actual)

each being given by Eqn 10.5-43.
Since some of these n \times n quantities may be zero, the actual periods of vibration need not be the same for all the n masses (even though, for each individual normal mode shape, the period of vibration is the same for all the masses).

Related Answered Questions