Question 4.4.1: Define the linear operator T: R³ → R³ by T([ x y z]) = [ x –...

Define the linear operator T: R³ → R³ by

T \left(\begin{bmatrix} x\\ y\\ z \end{bmatrix} \right) =\begin{bmatrix} x \\ -y \\ z  \end{bmatrix}

a. Find the matrix of T relative to the standard basis for R³.
b. Use the result of part (a) to find

T \left(\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} \right)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. Let B = \left\{e_{1}, e_{2}, e_{3}\right\} . be the standard basis for R³. Since

\left[T \left(e_{1} \right) \right] _{B} = \begin{bmatrix} 1 \\ 0\\ 0 \end{bmatrix}    \left[T \left(e_{2} \right) \right] _{B}   = \begin{bmatrix} 0 \\ -1\\ 0 \end{bmatrix}        \left[T \left(e_{3} \right) \right] _{B} = \begin{bmatrix} 0 \\ 0\\ 1 \end{bmatrix}.

then

\left[T\right] _{B} =\begin{bmatrix} 1&0&0 \\ 0&-1&0\\ 0&0&1 \end{bmatrix} .

b. Since B is the standard basis for R³, the coordinates of any vector are given by its components. In this case, with

v=\begin{bmatrix} 1 \\ 1\\ 2 \end{bmatrix}     then  \left[V\right] _{B} = \begin{bmatrix} 1 \\ 1\\ 2 \end{bmatrix}.

Thus, by Theorem 12,

T (v) = \left[T(v)\right] _{B} \begin{bmatrix} 1&0&0 \\ 0&-1&0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} 1 \\ 1\\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1\\ 2 \end{bmatrix}.

Notice that the action of T is a reflection through the xz plane, as shown in x Fig. 1.

555

Related Answered Questions

Question: 4.3.4

Verified Answer:

To use the method given in the proof of Theorem 11...
Question: 4.1.6

Verified Answer:

By Theorem 6 of Sec. 1.3, we have T (A+ B) ...
Question: 4.1.5

Verified Answer:

Since T (0) = T\left(\begin{bmatrix} 0 \\ 0...