Question 4.4.2: Let T: R² → R³ be the linear transformation defined by T (v)...

Let T: R² → R³ be the linear transformation defined by

T (v) = T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \right)  = \begin{bmatrix} x_{2} \\x_{1} + x_{2} \\ x_{1}-x_{2} \end{bmatrix}

and let

B= \left\{\begin{bmatrix}1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}           B^{′}=\left\{\begin{bmatrix}1 \\ 0\\0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1\\0 \end{bmatrix}, \begin{bmatrix}1 \\ 1\\1 \end{bmatrix} \right\}

be ordered bases for R² and R³,respectively.
a. Find the matrix \left[T\right] ^{B^{\prime } }_{B}.

b. Let v =\begin{bmatrix} -3 \\ -2 \end{bmatrix}. Find T (v) directly and then use the matrix found in part (a).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. We first apply T to the basis vectors of B, which gives

T\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)= \begin{bmatrix} 2 \\ 3\\-1 \end{bmatrix}       and  T\left(\begin{bmatrix} 3 \\ 1 \end{bmatrix} \right)= \begin{bmatrix} 1 \\ 4\\2 \end{bmatrix}

Next we find the coordinates of each of these vectors relative to the basis B^{′}.
That is, we find scalars such that

a_{1}\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} +a_{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} +a_{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}=  \begin{bmatrix} 2 \\ 3\\ -1  \end{bmatrix}

and

b_{1}\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} +b_{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} +b_{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}=  \begin{bmatrix} 1 \\ 4\\ 2  \end{bmatrix}

The solution to the first linear system is

a_{1} = −1       a_{2} = 4       a_{3} = −1

and the solution to the second system is

b_{1} = −3      b_{2} = 2      b_{3} = 2

Thus,

\left[T\right] ^{B^{\prime } }_{B} = \begin{bmatrix} -1&-3 \\ 4&2\\ -1&2  \end{bmatrix}

b. Using the definition of T directly, we have

T\left(\begin{bmatrix} -3 \\ -2 \end{bmatrix} \right) = \begin{bmatrix} -2\\ -3-2\\ −3 + 2 \end{bmatrix}= \begin{bmatrix} -2\\ -5\\ -1  \end{bmatrix}

Now, to use the matrix found in part (a), we need to find the coordinates of v relative to B. Observe that the solution to the equation

a_{1}\begin{bmatrix} 1\\ 2 \end{bmatrix} +a_{2} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \end{bmatrix}      is      a_{1}= – \frac{3}{5}    a_{2}=-\frac{4}{5}

Thus, the coordinate vector of \begin{bmatrix} -3 \\ -2 \end{bmatrix}. relative to B is

\begin{bmatrix} -3 \\-2 \end{bmatrix} _{B} = \begin{bmatrix} – \frac{3}{5}  \\- \frac{4}{5}  \end{bmatrix}

We can now evaluate T, using matrix multiplication, so that

\left[T(v)\right] _{B^{\prime } }=\begin{bmatrix} -1&-3 \\ 4&2 \\ -1&2 \end{bmatrix} \begin{bmatrix} – \frac{3}{5}  \\- \frac{4}{5}  \end{bmatrix}  = \begin{bmatrix} 3 \\ -4 \\ -1 \end{bmatrix}

Hence,

T (v) = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} -4\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} -\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \\ -1 \end{bmatrix}

which agrees with the direct computation.

Related Answered Questions

Question: 4.3.4

Verified Answer:

To use the method given in the proof of Theorem 11...
Question: 4.1.6

Verified Answer:

By Theorem 6 of Sec. 1.3, we have T (A+ B) ...
Question: 4.1.5

Verified Answer:

Since T (0) = T\left(\begin{bmatrix} 0 \\ 0...