Question B.5.6: Adding and subtracting rational expressions Perform the indi...

Adding and subtracting rational expressions

Perform the indicated operations.

a. \frac{x}{x-1}+\frac{2 x+3}{x^{2}-1}             b. \frac{x}{x^{2}+6 x+9}-\frac{x-3}{x^{2}+5 x+6}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a.   \frac{x}{x-1}+\frac{2 x+3}{x^{2}-1}=\frac{x}{x-1}+\frac{2 x+3}{(x-1)(x+1)}                  Factor denominators completely

=\frac{x(x+1)}{(x-1)(x+1)}+\frac{2 x+3}{(x-1)(x+1)}            Build up using the LCD (x – 1)(x + 1).

=\frac{x^{2}+x+2 x+3}{(x-1)(x+1)}          Add the fractions.

=\frac{x^{2}+3 x+3}{(x-1)(x+1)}             Simplify the numerator.

b.  \frac{x}{x^{2}+6 x+9}-\frac{x-3}{x^{2}+5 x+6}=\frac{x}{(x+3)^{2}}-\frac{x-3}{(x+2)(x+3)}

\begin{aligned} &=\frac{x(x+2)}{(x+3)^{2}(x+2)}-\frac{(x-3)(x+3)}{(x+2)(x+3)(x+3)} \\ &=\frac{x^{2}+2 x}{(x+3)^{2}(x+2)}-\frac{x^{2}-9}{(x+3)^{2}(x+2)} \\ &=\frac{2 x+9}{(x+3)^{2}(x+2)} \end{aligned}

Related Answered Questions

Question: B.4.6

Verified Answer:

a. Since x^{3}-27=x^{3}-3^{3}, we ...
Question: B.4.5

Verified Answer:

a.   4x² - 1 = (2x)² - 1²              Recognize t...
Question: B.5.4

Verified Answer:

a. \frac{9}{2 x} \div \frac{3}{x}=\frac{9}...
Question: B.4.7

Verified Answer:

a. 2 w^{4}-32=2\left(w^{4}-16\right)[/late...
Question: B.4.4

Verified Answer:

a. Since ac = 2 ⋅ 2 = 4 and b = 5, we need two num...