Question 3.5: A solid circular shaft of diameter 50 mm and length 1000 mm ...

A solid circular shaft of diameter 50 mm and length 1000 mm is subjected to a torque, T. The shaft is made from an elastic–perfectly plastic material with τ_{γ} = 100 N/mm², G = 70 GN/m². Determine the magnitude of the torque required to cause yielding to occur at a radius of 15 mm (and greater) and the angle of twist.

3.43
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium (moments about the axis)

T = \int_{r = 0}^{r = 25}{\underset{\underset{Torque arm \times force}{| } }{r} } \times \underset{\underset{stress }{| } }{\tau } \times \underset{\underset{\times }{} }{} \underset{\underset{area }{| } }{2\pi rdr}  

T = \int_{0}^{15}{ 2\pi \frac{100}{15}r^{3}dr } + \int_{15}^{25}{200\pi r^{2}dr}

= 200\pi \left\{\left[\frac{r^{4}}{15  \times  4} \right]_{0}^{15}+ \left[\frac{r^{3}}{3} \right]_{15}^{25} \right\}

= 200\pi \left[\frac{15^{4}}{15  \times  4} + \frac{25^{3·}}{3} – \frac{15^{3}}{3} \right]

\therefore                                                            T = 3.096 \times 10^{6} Nmm = 3.096  kNm

Relationship between \tau _{\gamma } and \gamma _{\gamma }: at the outermost elastic point, τ = \tau _{\gamma } and \gamma = \gamma _{\gamma } and the elastic relation G = \frac{\tau _{\gamma }}{\gamma _{\gamma }} is applicable. It should be noted that outside this outermost elastic point,

i.e. r = 15 mm, the strain, which will be larger, will be elastic–plastic and consequently will not be governed by τ = G_{\gamma }, which is the elastic relation. Nonetheless, at r = 15 mm, we have

\gamma _{\gamma } = \frac{\tau _{\gamma }}{G} = \frac{100}{70  000} = 1.4286 \times 10^{-3} rad

by invoking the compatibility requirement,

   r _{\gamma } \theta = \gamma _{\gamma } l

and hence

\theta = \frac{\gamma _{\gamma }l}{r _{\gamma }}

i.e.                                                  \theta = \frac{1.4286  \times  10^{-3} \times  1000  mm}{15  mm} \times \left(\frac{360}{2\pi } \frac{deg}{rad} \right)

\therefore                                                                                        \theta = 5.456°

Related Answered Questions

Question: 3.16

Verified Answer:

There is no restraint or applied loading (i.e. P =...