Question 11.5: A steel wide-flange column of HE 320A shape (Fig. 11-29a) is...

A steel wide-flange column of HE 320A shape (Fig. 11-29a) is pin supported at the ends and has a length of 7.5 m. The column supports a centrally applied load P_{1}=1800 \mathrm{~kN} and an eccentrically applied load P_{2}=200 \mathrm{~kN} (Fig. 11-29b). Bending takes place about axis 1–1 of the cross section, and the eccentric load acts on axis 2–2 at a distance of 400 mm from the centroid C.
(a) Using the secant formula, and assuming E = 210 GPa , calculate the maximum compressive stress in the column.
(b) If the yield stress for the steel is \sigma_{Y}=300 \mathrm{~MPa} , what is the factor of safety with respect to yielding?

11.29
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Maximum compressive stress. The two loads P_{1} and P_{2} acting as shown in Fig. 11-29b are statically equivalent to a single load P = 2000kN acting with an eccentricity  e = 40 mm (Fig. 11-29c). Since the column is now loaded by a single force P having an eccentricity e, we can use the secant formula to find the maximum stress.

The required properties of the HE 320A wide-flange shape are obtained from Table E-1 in Appendix E:

A=124.4 \mathrm{~cm}^{2} \quad r=13.58 \mathrm{~cm} \quad c=\frac{310 \mathrm{~mm}}{2}=155 \mathrm{~mm}

TABLE E-1
Properties of European Wide-Flange Beams

Designation Mass
per
meter
Area
of
section
Depth
of
section
Width
of
section
Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_{w} t_{t} I_{1} S_{1} r_{1} I_{2} S_{2} r_{2}
Kg/m {cm}^{2} mm mm mm mm {cm}^{4} {cm}^{3} cm {cm}^{4} {cm}^{3} cm
HE 1000 B
HE 900 B
HE 700 B
HE 650 b
HE 600 B
314
291
241
225
212
400
371.3
306.4
286.3
270
1000
900
700
650
600
300
300
300
300
300
19
18.5
17
16
15.5
36
35
32
31
30
644700
494100
256900
210600
171000
12890
10980
7340
6480
5701
40.15
36.48
28.96
27.12
25.17
16280
15820
14440
13980
13530
1085
1054
962.7
932.3
902
6.38
6.53
6.87
6.99
7.08
HE 550 B
HE 600 A
HE 450 B
HE 550 A
HE 360 B
HE 450 A
199
178
171
166
142
140
254.1
226.5
218
211.8
180.6
178
550
590
450
540
360
440
300
300
300
300
300
300
15
13
14
12.5
12.5
11.5
29
25
26
24
22.5
21
136700
141200
79890
111900
43190
63720
4971
4787
3551
4146
2400
2896
23.2
24.97
19.14
22.99
15.46
18.92
13080
11270
11720
10820
10140
9465
871.8
751.4
781.4
721.3
676.1
631
7.17
7.05
7.33
7.15
7.49
7.29
HE 340 B
HE 320 B
HE 360 A
HE 340 A
134
127
112
105
170.9
161.3
142.8
133.5
340
320
350
330
300
300
300
300
12
11.5
10
9.5
21.5
20.5
17.5
16.5
36660
30820
33090
27690
2156
1926
1891
1678
14.65
13.82
15.22
14.4
9690
9239
7887
7436
646
615.9
525.8
495.7
7.53
7.57
7.43
7.46
HE 320 A
HE 260 B
HE 240 B
HE 280 A
HE 220 B
HE 260 A
HE 240 A
97.6
93
83.2
76.4
71.5
68.2
60.3
124.4
118.4
106
97.26
91.04
86.82
76.84
310
260
240
270
220
250
230
300
260
240
280
220
260
240
9
10
10
8
9.5
7.5
7.5
15.5
17.5
17
13
16
12.5
12
22930
14920
11260
13670
8091
10450
7763
1479
1148
938.3
1013
735.5
836.4
675.1
13.58
11.22
10.31
11.86
9.43
10.97
10.05
6985
5135
3923
4763
2843
3668
2769
465.7
395
326.9
340.2
258.5
282.1
230.7
7.49
6.58
6.08
7
5.59
6.5
6
HE 180 B
HE 160 B
HE 140 B
HE 120 B
HE 140 A
51.2
42.6
33.7
26.7
24.7
65.25
54.25
42.96
34.01
31.42
180
160
140
120
133
180
160
140
120
140
8.5
8
7
6.5
5.5
14
13
12
11
8.5
3831
2492
1509
864.4
1033
425.7
311.5
215.6
144.1
155.4
7.66
6.78
5.93
5.04
5.73
1363
889.2
549.7
317.5
389.3
151.4
111.2
78.52
52.92
55.62
4.57
4.05
3.58
3.06
3.52
HE 100 B
HE 100 A
20.4
16.7
26.4
21.24
100
96
100
100
6
5
10
8
449.5
349.2
89.91
72.76
4.16
4.06
167.3
133.8
33.45
26.76
2.53
2.51
Note: Axes 1-1 and 2-2 are principal centroidal axes.

The required terms in the secant formula of Eq. (11-67) \sigma_{\max }=\frac{P}{A}\left[1+\frac{e c}{r^{2}} \sec \left(\frac{L}{2 r} \sqrt{\frac{P}{E A}}\right)\right] are calculated as follows:

\begin{aligned}\frac{P}{A} &=\frac{2000 \mathrm{kN}}{124.4 \mathrm{~cm}^{2}}=160.77 \mathrm{~MPa} \\\frac{e c}{r^{2}} &=\frac{(40 \mathrm{~mm})(155 \mathrm{~mm})}{(13.58 \mathrm{~cm})^{2}}=0.336 \\\frac{L}{r} &=\frac{7.5 \mathrm{~m}}{13.58 \mathrm{~cm}}=55.23 \\\frac{P}{E A} &=\frac{2000 \mathrm{~kN}}{(210 \mathrm{~GPa})\left(124.4 \mathrm{~cm}^{2}\right)}=765.6 \times 10^{-6}\end{aligned}

Substituting these values into the secant formula, we get

\begin{aligned}\sigma_{\max } &=\frac{P}{A}\left[1+\frac{\mathrm{ec}}{r^{2}} \sec \left(\frac{L}{2 r}\sqrt{\frac{P}{E A}}\right)\right] \\&=(160.77 \mathrm{~MPa})(1+0.466)=235.6 \mathrm{~MPa}\end{aligned}

This compressive stress occurs at midheight of the column on the concave side (the right-hand side in Fig. 11-29b).

(b) Factor of safety with respect to yielding. To find the factor of safety, we need to determine the value of the load P, acting at the eccentricity e, that will produce a maximum stress equal to the yield stress \sigma_{Y} = MPa Since this value of the load is just sufficient to produce initial yielding of the material, we will denote it as P_{Y}.

Note that we cannot determine P_{Y} by multiplying the load P (equal to 2000 kN) by the ratio \sigma_{Y} /\sigma_{max} . The reason is that we are dealing with a non-linear relationship between load and stress. Instead, we must substitute \sigma_{max}  = \sigma_{Y} = 300 MPa in the secant formula and then solve for the corre-sponding load P, which becomes P_{Y}. In other words, we must find the value of P_{Y} that satisfies the following equation:

\sigma_{Y}=\frac{P_{Y}}{A}\left[1+\frac{e c}{r^{2}} \sec \left(\frac{L}{2 r} \sqrt{\frac{P_{Y}}{E A}}\right)\right]    (11-70)

Substituting numerical values, we obtain

300 \mathrm{~MPa}=\frac{P_{Y}}{124.4 \mathrm{~cm}^{2}}\left[1+0.336 \mathrm{sec}\left(\frac{55.23}{2} \sqrt{\frac{P_{Y}}{(210 \mathrm{~GPa})\left(124.4 \mathrm{~cm}^{2}\right)}}\right)\right]

or  3732 \mathrm{~kN}=P_{Y}\left[1+0.336 \sec \left(5.403 \times 10^{-4} \sqrt{P_{Y}}\right)\right]

in which P_{Y} has units of kN. Solving this equation numerically, we get

P_{Y}=2473 \mathrm{~kN}

This load will produce yielding of the material (in compression) at the cross section of maximum bending moment.
Since the actual load is P = 2000 kN , the factor of safety against yielding is

n=\frac{P_{Y}}{P}=\frac{2473 \mathrm{~kN}}{2000 \mathrm{~kN}}=1.236

This example illustrates two of the many ways in which the secant formula may be used. Other types of analysis are illustrated in the problems at the end of the chapter.

Related Answered Questions