Question 12.5: Determine the moment of inertia Ic with respect to the horiz...

Determine the moment of inertia Ic with respect to the horizontal axis C–C through the centroid C of the beam cross section shown in Fig. 12-16. (The position of the centroid C was determined previously in Example 12-2 of Section 12.3.)
Note: From beam theory (Chapter 5), we know that axis C–C is the neu-tral axis for bending of this beam, and therefore the moment of inertia I_{c} must be determined in order to calculate the stresses and deflections of this beam.

12.16
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We will determine the moment of inertia I_{c} with respect to axis C–C by applying the parallel-axis theorem to each individual part of the composite area. The area divides naturally into three parts: (1) the cover plate, (2) the wide-flange section, and (3) the channel section. The following areas and centroidal distances were obtained previously in Example 12-2:

\begin{gathered}A_{1}=37.5 \mathrm{~cm}^{2} \quad A_{2}=178 \mathrm{~cm}^{2} \quad A_{3}=75.8 \mathrm{~cm}^{2} \\\bar{y}_{1}=227.5 \mathrm{~mm} \quad \bar{y}_{2}=0 \quad \bar{y}_{3}=246 \mathrm{~mm}\quad \bar{c}=34.73 \mathrm{~mm}\end{gathered}

The moments of inertia of the three parts with respect to horizontal axes through their own centroids C_{1} , C_{2} , and C_{1} are as follows:

\begin{gathered}I_{1}=\frac{b h^{3}}{12}=\frac{1}{12}(25 \mathrm{~cm})(1.5 \mathrm{~cm})^{3}=7.031 \mathrm{~cm}^{4} \\I_{2}=63720 \mathrm{~cm}^{4} \quad I_{3}=597 \mathrm{~cm}^{4}\end{gathered}

The moments of inertia I_{2} and I_{3} are obtained from Tables E-1 and E-3, respectively, of Appendix E.

TABLE E-1
Properties of European Wide-Flange Beams

Designation Mass
per
meter
Area
of
section
Depth
of
section
Width
of
section
Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_{w} t_{t} I_{1} S_{1} r_{1} I_{2} S_{2} r_{2}
Kg/m {cm}^{2} mm mm mm mm {cm}^{4} {cm}^{3} cm {cm}^{4} {cm}^{3} cm
HE 1000 B
HE 900 B
HE 700 B
HE 650 b
HE 600 B
314
291
241
225
212
400
371.3
306.4
286.3
270
1000
900
700
650
600
300
300
300
300
300
19
18.5
17
16
15.5
36
35
32
31
30
644700
494100
256900
210600
171000
12890
10980
7340
6480
5701
40.15
36.48
28.96
27.12
25.17
16280
15820
14440
13980
13530
1085
1054
962.7
932.3
902
6.38
6.53
6.87
6.99
7.08
HE 550 B
HE 600 A
HE 450 B
HE 550 A
HE 360 B
HE 450 A
199
178
171
166
142
140
254.1
226.5
218
211.8
180.6
178
550
590
450
540
360
440
300
300
300
300
300
300
15
13
14
12.5
12.5
11.5
29
25
26
24
22.5
21
136700
141200
79890
111900
43190
63720
4971
4787
3551
4146
2400
2896
23.2
24.97
19.14
22.99
15.46
18.92
13080
11270
11720
10820
10140
9465
871.8
751.4
781.4
721.3
676.1
631
7.17
7.05
7.33
7.15
7.49
7.29
HE 340 B
HE 320 B
HE 360 A
HE 340 A
134
127
112
105
170.9
161.3
142.8
133.5
340
320
350
330
300
300
300
300
12
11.5
10
9.5
21.5
20.5
17.5
16.5
36660
30820
33090
27690
2156
1926
1891
1678
14.65
13.82
15.22
14.4
9690
9239
7887
7436
646
615.9
525.8
495.7
7.53
7.57
7.43
7.46
HE 320 A
HE 260 B
HE 240 B
HE 280 A
HE 220 B
HE 260 A
HE 240 A
97.6
93
83.2
76.4
71.5
68.2
60.3
124.4
118.4
106
97.26
91.04
86.82
76.84
310
260
240
270
220
250
230
300
260
240
280
220
260
240
9
10
10
8
9.5
7.5
7.5
15.5
17.5
17
13
16
12.5
12
22930
14920
11260
13670
8091
10450
7763
1479
1148
938.3
1013
735.5
836.4
675.1
13.58
11.22
10.31
11.86
9.43
10.97
10.05
6985
5135
3923
4763
2843
3668
2769
465.7
395
326.9
340.2
258.5
282.1
230.7
7.49
6.58
6.08
7
5.59
6.5
6
HE 180 B
HE 160 B
HE 140 B
HE 120 B
HE 140 A
51.2
42.6
33.7
26.7
24.7
65.25
54.25
42.96
34.01
31.42
180
160
140
120
133
180
160
140
120
140
8.5
8
7
6.5
5.5
14
13
12
11
8.5
3831
2492
1509
864.4
1033
425.7
311.5
215.6
144.1
155.4
7.66
6.78
5.93
5.04
5.73
1363
889.2
549.7
317.5
389.3
151.4
111.2
78.52
52.92
55.62
4.57
4.05
3.58
3.06
3.52
HE 100 B
HE 100 A
20.4
16.7
26.4
21.24
100
96
100
100
6
5
10
8
449.5
349.2
89.91
72.76
4.16
4.06
167.3
133.8
33.45
26.76
2.53
2.51
Note: Axes 1-1 and 2-2 are principal centroidal axes.

TABLE E-3
Properties of European Standard Channels

Designation Mass
per
meter
Area
of
section
Depth
of
section
Width
of
section
Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_{w} t_{t} I_{1} S_{1} r_{1} I_{2} S_{2} r_{2} c
Kg/m {cm}^{2} mm mm mm mm {cm}^{4} {cm}^{3} cm {cm}^{4} {cm}^{3} cm cm
UPN 400 71.8 91.5 400 110 14 18 20350 1020 14.9 846 102 3.04 2.65
UPN 380
UPN 350
UPN 320
UPN 300
63.1
60.6
59.5
46.2
80.4
77.3
75.8
85.5
380
350
320
300
102
100
100
100
13.5
14
14
10
16
16
17.5
16
15760
12840
10870
8030
829
734
679
535
14
12.9
12.1
11.7
615
570
597
495
78.7
75
80.6
67.8
2.77
2.72
2.81
2.9
2.38
2.4
2.6
2.7
UPN 280
UPN 260
UPN 240
UPN 220
UPN 200
41.8
37.9
33.2
29.4
25.3
53.3
48.3
42.3
37.4
32.2
280
260
240
220
200
96
90
85
80
75
10
10
9.5
9
8.5
15
14
13
12.5
11.5
6280
4820
3600
2690
1910
448
371
300
245
191
10.9
9.99
9.22
8.48
7.7
399
317
248
197
148
57.2
47.7
39.6
33.6
27
2.74
2.56
2.42
2.3
2.14
2.53
2.36
2.23
2.14
2.01
UPN 180
UPN 160
UPN 140
UPN 120
UPN 100
22
18.8
16
13.4
10.6
28
24
20.4
17
13.5
180
160
140
120
100
70
65
60
55
50
8
7.5
7
7
6
11
10.5
10
9
8.5
1350
925
605
364
206
150
116
86.4
60.7
412
6.95
6.21
5.45
4.62
3.91
114
85.3
62.7
43.2
29.3
22.4
18.3
14.8
11.1
8.49
2.02
1.89
1.75
1.59
1.47
1.92
1.84
1.75
1.6
1.55
UPN 80 8.64 11 80 45 6 8 106 26.5 3.1 19.4 6.36 1.33 1.45
Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

Now we can use the parallel-axis theorem to calculate the moments of inertia about axis C–C for each of the three parts of the composite area

\begin{aligned}&\left(I_{c}\right)_{1}=I_{1}+A_{1}\left(\bar{y}_{1}+\bar{c}\right)^{2}=7.031\mathrm{~cm}^{4}+\left(37.5 \mathrm{~cm}^{2}\right)(26.22 \mathrm{~cm})^{2}=25790 \mathrm{~cm}^{4} \\&\left(I_{c}\right)_{2}=I_{2}+A_{2} \bar{c}^{2}=63720 \mathrm{~cm}^{4}+\left(178 \mathrm{~cm}^{2}\right)(34.73\mathrm{~cm})^{2}=65870 \mathrm{~cm}^{4} \\&\left(I_{c}\right)_{3}=I_{3}+A_{3}\left(\bar{y}_{3}-\bar{c}\right)^{2}=597 \mathrm{~cm}^{4}+\left(75.8 \mathrm{~cm}^{2}\right)(21.13 \mathrm{~cm})^{2}=34430\mathrm{~cm}^{4}\end{aligned}

The sum of these individual moments of inertia gives the moment of inertia of the entire cross-sectional area about its centroidal axis C–C:

I_{c}=\left(I_{c}\right)_{1}+\left(I_{c}\right)_{2}+\left(I_{c}\right)_{3}=1.261 \times 10^{5} \mathrm{~cm}^{4}

This example shows how to calculate moments of inertia of composite areas by using the parallel-axis theorem.

Related Answered Questions