Question 8.50: For the circuit in Fig. 8.97, find i(t)  for t >0

For the circuit in Fig. 8.97, find i(t)  for t >0

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For t = 0-, 4u(t) = 0, v(0) = 0, and i(0) = 30/10 = 3A.

For t > 0, we have a parallel RLC circuit.

\mathrm{I}_{\mathrm{s}}=3+6=9 \mathrm{A} and \mathrm{R}=10 \| 40=8 \mathrm{ohms}

\begin{array}{l}\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 8 \times 0.01)=25 / 4=6.25 \\\\\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{4 \times 0.01}=5\end{array}

since \alpha>\omega_{0}, we have a overdamped response.

\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-10,-2.5

Thus, \mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{s}}+\left[\mathrm{Ae}^{-10 \mathrm{t}}\right]+\left[\mathrm{Be}^{-2.5 \mathrm{t}}\right], \quad \mathrm{I}_{\mathrm{s}}=9

\begin{array}{l}\mathrm{i}(0)=3=9+\mathrm{A}+\mathrm{B} \text { or } \mathrm{A}+\mathrm{B}=-6 \\\\\mathrm{di} / \mathrm{dt}=\left[-10 \mathrm{Ae}^{-10 \mathrm{t}}\right]+\left[-2.5 \mathrm{Be}^{-2.5 \mathrm{t}}\right]\\\end{array}

\mathrm{v}(0)=0=\operatorname{Ldi}(0) / \mathrm{dt} or \mathrm{di}(0) / \mathrm{dt}=0=-10 \mathrm{A}-2.5 \mathrm{B} or \mathrm{B}=-4 \mathrm{A}
Thus, A=2 and B=-8
Clearly,
\mathrm{i}(\mathrm{t})={9+[2 \mathrm{e}^{-10 t}]+[-8 \mathrm{e}^{-2.5 t}]} A

Capture

Related Answered Questions

The schematic is shown below. We use VPWL and IPWL...
The dual is constructed in Figure (a) and redrawn ...
The dual is obtained from the original circuit as ...
The dual circuit is connected as shown in Figure (...
Let i= inductor current and v= capacitor voltage. ...
For \mathrm{t}=0^{-}, \mathrm{i}(0)=3+12 / ...