For the circuit in Fig. 8.97, find i(t) for t >0
For the circuit in Fig. 8.97, find i(t) for t >0
For t = 0-, 4u(t) = 0, v(0) = 0, and i(0) = 30/10 = 3A.
For t > 0, we have a parallel RLC circuit.
\mathrm{I}_{\mathrm{s}}=3+6=9 \mathrm{A} and \mathrm{R}=10 \| 40=8 \mathrm{ohms}
\begin{array}{l}\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 8 \times 0.01)=25 / 4=6.25 \\\\\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{4 \times 0.01}=5\end{array}since \alpha>\omega_{0}, we have a overdamped response.
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-10,-2.5Thus, \mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{s}}+\left[\mathrm{Ae}^{-10 \mathrm{t}}\right]+\left[\mathrm{Be}^{-2.5 \mathrm{t}}\right], \quad \mathrm{I}_{\mathrm{s}}=9
\begin{array}{l}\mathrm{i}(0)=3=9+\mathrm{A}+\mathrm{B} \text { or } \mathrm{A}+\mathrm{B}=-6 \\\\\mathrm{di} / \mathrm{dt}=\left[-10 \mathrm{Ae}^{-10 \mathrm{t}}\right]+\left[-2.5 \mathrm{Be}^{-2.5 \mathrm{t}}\right]\\\end{array}\mathrm{v}(0)=0=\operatorname{Ldi}(0) / \mathrm{dt} or \mathrm{di}(0) / \mathrm{dt}=0=-10 \mathrm{A}-2.5 \mathrm{B} or \mathrm{B}=-4 \mathrm{A}
Thus, A=2 and B=-8
Clearly,
\mathrm{i}(\mathrm{t})={9+[2 \mathrm{e}^{-10 t}]+[-8 \mathrm{e}^{-2.5 t}]} A